These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 1637298)
1. Direct electrochemical studies of hydrogenase and CO dehydrogenase. Smith ET; Ensign SA; Ludden PW; Feinberg BA Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):181-5. PubMed ID: 1637298 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. Ensign SA; Ludden PW J Biol Chem; 1991 Sep; 266(27):18395-403. PubMed ID: 1917963 [TBL] [Abstract][Full Text] [Related]
3. Redox-dependent CO2 reduction activity of CO dehydrogenase from Rhodospirillum rubrum. Heo J; Staples CR; Ludden PW Biochemistry; 2001 Jun; 40(25):7604-11. PubMed ID: 11412114 [TBL] [Abstract][Full Text] [Related]
4. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: in vivo and in vitro activation by exogenous nickel. Bonam D; McKenna MC; Stephens PJ; Ludden PW Proc Natl Acad Sci U S A; 1988 Jan; 85(1):31-5. PubMed ID: 2829176 [TBL] [Abstract][Full Text] [Related]
6. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum. Ensign SA; Bonam D; Ludden PW Biochemistry; 1989 Jun; 28(12):4968-73. PubMed ID: 2504284 [TBL] [Abstract][Full Text] [Related]
8. Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum. Hyman MR; Ensign SA; Arp DJ; Ludden PW Biochemistry; 1989 Aug; 28(17):6821-6. PubMed ID: 2510818 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic studies of nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: nature of the iron-sulfur clusters. Craft JL; Ludden PW; Brunold TC Biochemistry; 2002 Feb; 41(5):1681-8. PubMed ID: 11814363 [TBL] [Abstract][Full Text] [Related]
10. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity. Bonam D; Lehman L; Roberts GP; Ludden PW J Bacteriol; 1989 Jun; 171(6):3102-7. PubMed ID: 2498285 [TBL] [Abstract][Full Text] [Related]
11. Spectroelectrochemical characterization of the metal centers in carbon monoxide dehydrogenase (CODH) and nickel-deficient CODH from Rhodospirillum rubrum. Spangler NJ; Lindahl PA; Bandarian V; Ludden PW J Biol Chem; 1996 Apr; 271(14):7973-7. PubMed ID: 8626477 [TBL] [Abstract][Full Text] [Related]
12. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472 [TBL] [Abstract][Full Text] [Related]
13. Carbon monoxide dehydrogenase from Rhodospirillum rubrum: effect of redox potential on catalysis. Feng J; Lindahl PA Biochemistry; 2004 Feb; 43(6):1552-9. PubMed ID: 14769031 [TBL] [Abstract][Full Text] [Related]