BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16373083)

  • 1. Brain responses to tonal changes in the first two years of life.
    Jing H; Benasich AA
    Brain Dev; 2006 May; 28(4):247-56. PubMed ID: 16373083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory event-related responses in children with semi-lobar holoprosencephaly.
    Jing H; Flax J; Roesler CP; Choudhury N; Benasich AA
    Brain Dev; 2006 May; 28(4):207-14. PubMed ID: 16481137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory pre-attentive processing of Chinese tones.
    Yang LJ; Cao KL; Wei CG; Liu YZ
    Chin Med J (Engl); 2008 Dec; 121(23):2429-33. PubMed ID: 19102963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of frontal and temporal components of mismatch negativity (MMN) in children.
    Gomot M; Giard MH; Roux S; Barthélémy C; Bruneau N
    Neuroreport; 2000 Sep; 11(14):3109-12. PubMed ID: 11043532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maturation of the auditory event-related potentials during the first year of life.
    Kushnerenko E; Ceponiene R; Balan P; Fellman V; Huotilaine M; Näätäne R
    Neuroreport; 2002 Jan; 13(1):47-51. PubMed ID: 11924892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of the length of the temporal window of integration for rapidly presented auditory information as indexed by MMN.
    Wang W; Datta H; Sussman E
    Clin Neurophysiol; 2005 Jul; 116(7):1695-706. PubMed ID: 15905124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component analyses and scalp distribution of the auditory P150-250 and N250-550 to speech contrasts in Mexican and American infants.
    Rivera-Gaxiola M; Silva-Pereyra J; Klarman L; Garcia-Sierra A; Lara-Ayala L; Cadena-Salazar C; Kuhl P
    Dev Neuropsychol; 2007; 31(3):363-78. PubMed ID: 17559330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Topography of the Event-Related Brain Responses during Discrimination of Auditory Motion in Humans].
    Shestopalova LB; Petropavlovskaia EA; Vaitulevich SP; Nikitin NI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2015; 65(5):577-96. PubMed ID: 26860001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maturation of the auditory change detection response in infants: a longitudinal ERP study.
    Kushnerenko E; Ceponiene R; Balan P; Fellman V; Näätänen R
    Neuroreport; 2002 Oct; 13(15):1843-8. PubMed ID: 12395076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex differences in brain maturation as measured using event-related potentials.
    Sumich AL; Sarkar S; Hermens DF; Ibrahimovic A; Kelesidi K; Wilson D; Rubia K
    Dev Neuropsychol; 2012; 37(5):415-33. PubMed ID: 22799761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain source localization of MMN, P300 and N400: aging and gender differences.
    Tsolaki A; Kosmidou V; Hadjileontiadis L; Kompatsiaris IY; Tsolaki M
    Brain Res; 2015 Apr; 1603():32-49. PubMed ID: 25445998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-related brain potentials to change in the frequency and temporal structure of sounds in typically developing 5-6-year-old children.
    Ervast L; Hämäläinen JA; Zachau S; Lohvansuu K; Heinänen K; Veijola M; Heikkinen E; Suominen K; Luotonen M; Lehtihalmes M; Leppänen PH
    Int J Psychophysiol; 2015 Dec; 98(3 Pt 1):413-25. PubMed ID: 26342552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study.
    Putkinen V; Tervaniemi M; Saarikivi K; Ojala P; Huotilainen M
    Dev Sci; 2014 Mar; 17(2):282-97. PubMed ID: 24283257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mismatch negativity (MMN) reveals inefficient auditory ventral stream function in chronic auditory comprehension impairments.
    Robson H; Cloutman L; Keidel JL; Sage K; Drakesmith M; Welbourne S
    Cortex; 2014 Oct; 59():113-25. PubMed ID: 25173955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological study of auditory development.
    Lippé S; Martinez-Montes E; Arcand C; Lassonde M
    Neuroscience; 2009 Dec; 164(3):1108-18. PubMed ID: 19665050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal frequency discrimination in 250-4000-Hz range: electrophysiological evidence.
    Novitski N; Huotilainen M; Tervaniemi M; Näätänen R; Fellman V
    Clin Neurophysiol; 2007 Feb; 118(2):412-9. PubMed ID: 17134940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation of cortical mismatch responses to occasional pitch change in early infancy: effects of presentation rate and magnitude of change.
    He C; Hotson L; Trainor LJ
    Neuropsychologia; 2009 Jan; 47(1):218-29. PubMed ID: 18722392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source localization of event-related potentials to pitch change mapped onto age-appropriate MRIs at 6 months of age.
    Hämäläinen JA; Ortiz-Mantilla S; Benasich AA
    Neuroimage; 2011 Feb; 54(3):1910-8. PubMed ID: 20951812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.