BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16373319)

  • 21. Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake.
    Caesar CE; Esbjörner EK; Lincoln P; Nordén B
    Biochemistry; 2006 Jun; 45(24):7682-92. PubMed ID: 16768464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes.
    Baenziger JE; Darsaut TE; Morris ML
    Biochemistry; 1999 Apr; 38(16):4905-11. PubMed ID: 10213591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy.
    Ganchev DN; Rijkers DT; Snel MM; Killian JA; de Kruijff B
    Biochemistry; 2004 Nov; 43(47):14987-93. PubMed ID: 15554706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 2. Membrane fluidity and ligand-mediated alteration in the accessibility of gamma subunit cysteine residues to cholesterol.
    Narayanaswami V; McNamee MG
    Biochemistry; 1993 Nov; 32(46):12420-7. PubMed ID: 8241132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices.
    Caputo GA; London E
    Biochemistry; 2003 Mar; 42(11):3275-85. PubMed ID: 12641459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing topology and dynamics of the second transmembrane domain (M2δ) of the acetyl choline receptor using magnetically aligned lipid bilayers (bicelles) and EPR spectroscopy.
    Sahu ID; Mayo DJ; Subbaraman N; Inbaraj JJ; McCarrick RM; Lorigan GA
    Chem Phys Lipids; 2017 Aug; 206():9-15. PubMed ID: 28571787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The lipid environment of the nicotinic acetylcholine receptor in native and reconstituted membranes.
    Barrantes FJ
    Crit Rev Biochem Mol Biol; 1989; 24(5):437-78. PubMed ID: 2676352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers.
    Raja MM; Kinne RK
    Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of transmembrane-spanning segments of the alpha2-adrenergic receptor with model membranes.
    Prades J; Encinar JA; Funari SS; González-Ros JM; Escribá PV; Barceló F
    Mol Membr Biol; 2009 Aug; 26(5):265-78. PubMed ID: 19568979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variation of the lateral mobility of transmembrane peptides with hydrophobic mismatch.
    Gambin Y; Reffay M; Sierecki E; Homblé F; Hodges RS; Gov NS; Taulier N; Urbach W
    J Phys Chem B; 2010 Mar; 114(10):3559-66. PubMed ID: 20170092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes.
    Tiriveedhi V; Butko P
    Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane.
    Borroni V; Baier CJ; Lang T; Bonini I; White MM; Garbus I; Barrantes FJ
    Mol Membr Biol; 2007; 24(1):1-15. PubMed ID: 17453409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A synergistic effect between cholesterol and tryptophan-flanked transmembrane helices modulates membrane curvature.
    van Duyl BY; Meeldijk H; Verkleij AJ; Rijkers DT; Chupin V; de Kruijff B; Killian JA
    Biochemistry; 2005 Mar; 44(11):4526-32. PubMed ID: 15766283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes.
    Caputo GA; London E
    Biochemistry; 2003 Mar; 42(11):3265-74. PubMed ID: 12641458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of cholesterol on the structure and dynamic properties of unsaturated phospholipid bilayers].
    Kornilov VV; Rabinovich AL; Balabaev NK; Bessonov VV
    Biofizika; 2008; 53(1):84-92. PubMed ID: 18488506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for lipid modulation of nicotinic acetylcholine receptor function.
    Barrantes FJ
    Brain Res Brain Res Rev; 2004 Dec; 47(1-3):71-95. PubMed ID: 15572164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid matters: nicotinic acetylcholine receptor-lipid interactions (Review).
    Barrantes FJ
    Mol Membr Biol; 2002; 19(4):277-84. PubMed ID: 12512774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study.
    Pimthon J; Willumeit R; Lendlein A; Hofmann D
    J Pept Sci; 2009 Oct; 15(10):654-67. PubMed ID: 19691017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries.
    Fastenberg ME; Shogomori H; Xu X; Brown DA; London E
    Biochemistry; 2003 Oct; 42(42):12376-90. PubMed ID: 14567699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid composition alters drug action at the nicotinic acetylcholine receptor.
    Baenziger JE; Ryan SE; Goodreid MM; Vuong NQ; Sturgeon RM; daCosta CJ
    Mol Pharmacol; 2008 Mar; 73(3):880-90. PubMed ID: 18055762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.