BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 1637342)

  • 1. Use of rosy mutant strains of Drosophila melanogaster to probe the structure and function of xanthine dehydrogenase.
    Hughes RK; Doyle WA; Chovnick A; Whittle JR; Burke JF; Bray RC
    Biochem J; 1992 Jul; 285 ( Pt 2)(Pt 2):507-13. PubMed ID: 1637342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism.
    Doyle WA; Burke JF; Chovnick A; Dutton FL; Whittle JR; Bray RC
    Eur J Biochem; 1996 Aug; 239(3):782-95. PubMed ID: 8774727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine dehydrogenase from Drosophila melanogaster: purification and properties of the wild-type enzyme and of a variant lacking iron-sulfur centers.
    Hughes RK
    Biochemistry; 1992 Mar; 31(12):3073-83. PubMed ID: 1313286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role and oxidation state of the pterin molybdenum cofactor of molybdenum enzymes: studies of a Drosophila melanogaster xanthine dehydrogenase (rosy) variant, G1011E.
    Doyle WA; Chovnick A; Whittle JR; Bray RC
    Biochem Soc Trans; 1996 Feb; 24(1):14S. PubMed ID: 8674630
    [No Abstract]   [Full Text] [Related]  

  • 5. Roles of molybdenum, FAD and iron-sulphur domains in molybdenum-containing hydroxylases: molecular genetic, kinetic and spectroscopic studies.
    Hughes RK; Bennett B; Doyle WA; Burke JF; Chovnick A; Bray RC
    Biochem Soc Trans; 1991 Aug; 19(3):260S. PubMed ID: 1783109
    [No Abstract]   [Full Text] [Related]  

  • 6. Identification of a molybdopterin-containing molybdenum cofactor in xanthine dehydrogenase from Pseudomonas aeruginosa.
    Johnson JL; Chaudhury M; Rajagopalan KV
    Biofactors; 1991 Jun; 3(2):103-7. PubMed ID: 1654922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and molecular characterization of the genes for carbon monoxide dehydrogenase and localization of molybdopterin, flavin adenine dinucleotide, and iron-sulfur centers in the enzyme of Hydrogenophaga pseudoflava.
    Kang BS; Kim YM
    J Bacteriol; 1999 Sep; 181(18):5581-90. PubMed ID: 10482497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of xanthine dehydrogenase from the anaerobic bacterium Veillonella atypica and identification of a molybdopterin-cytosine-dinucleotide-containing molybdenum cofactor.
    Gremer L; Meyer O
    Eur J Biochem; 1996 Jun; 238(3):862-6. PubMed ID: 8706691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of XDHC in Molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus.
    Leimkühler S; Klipp W
    J Bacteriol; 1999 May; 181(9):2745-51. PubMed ID: 10217763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
    Leimkühler S; Klipp W
    FEMS Microbiol Lett; 1999 May; 174(2):239-46. PubMed ID: 10339814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdenum hydroxylases in Drosophila. III. Further characterization of the low xanthine dehydrogenase gene.
    Schott DR; Baldwin MC; Finnerty V
    Biochem Genet; 1986 Aug; 24(7-8):509-27. PubMed ID: 3092803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of intracellular molybdenum in Hydrogenophaga pseudoflava on the crystallographic structure of the seleno-molybdo-iron-sulfur flavoenzyme carbon monoxide dehydrogenase.
    Hänzelmann P; Dobbek H; Gremer L; Huber R; Meyer O
    J Mol Biol; 2000 Sep; 301(5):1221-35. PubMed ID: 10966817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The isolation of demolybdo xanthine oxidase from bovine milk.
    Ventom AM; Deistung J; Bray RC
    Biochem J; 1988 Nov; 255(3):949-56. PubMed ID: 2850803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a prokaryotic xanthine dehydrogenase from Comamonas acidovorans.
    Xiang Q; Edmondson DE
    Biochemistry; 1996 Apr; 35(17):5441-50. PubMed ID: 8611534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase.
    Nishino T; Okamoto K
    J Inorg Biochem; 2000 Nov; 82(1-4):43-9. PubMed ID: 11132637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum hydroxylases in Drosophila. II. Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase.
    Warner CK; Finnerty V
    Mol Gen Genet; 1981; 184(1):92-6. PubMed ID: 6950197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell biology of molybdenum.
    Mendel RR
    Biofactors; 2009; 35(5):429-34. PubMed ID: 19623604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of molybdenum in human biology.
    Coughlan MP
    J Inherit Metab Dis; 1983; 6 Suppl 1():70-7. PubMed ID: 6312191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.