These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16373486)

  • 21. Structure-function analysis of the kinase-CPD domain of yeast tRNA ligase (Trl1) and requirements for complementation of tRNA splicing by a plant Trl1 homolog.
    Wang LK; Schwer B; Englert M; Beier H; Shuman S
    Nucleic Acids Res; 2006; 34(2):517-27. PubMed ID: 16428247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of deoxyribozymes that synthesize branched RNA.
    Wang Y; Silverman SK
    Biochemistry; 2003 Dec; 42(51):15252-63. PubMed ID: 14690435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nested introns in an intron: evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA.
    Suzuki H; Kameyama T; Ohe K; Tsukahara T; Mayeda A
    FEBS Lett; 2013 Mar; 587(6):555-61. PubMed ID: 23395799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplification of unknown RNAs and RNA mixtures based on unique restriction enzyme cleavage in vitro.
    Yang F; Wang J; Ji Y; Cheng H; Wan J; Xiao Z; Zhou G
    Acta Biochim Biophys Sin (Shanghai); 2010 Dec; 42(12):873-82. PubMed ID: 21106769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of RNA having cap structure.
    Iwase R; Maeda M; Fujiwara T; Sekine M; Hata T; Miura K
    Nucleic Acids Symp Ser; 1990; (22):67-8. PubMed ID: 1714574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of plastid unspliced transcripts and lariat group II introns.
    del Campo EM; Casano LM
    Biochimie; 2008 Mar; 90(3):474-83. PubMed ID: 17999921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel approach to the synthesis of DNA and RNA lariats.
    Mitra D; Damha MJ
    J Org Chem; 2007 Dec; 72(25):9491-500. PubMed ID: 17979285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthetic and high-field NMR study of branched tri-, tetra-, penta-, and heptaribonucleotides modelling the lariat-intron in group II splicing.
    Zhou XX; Vial JM; Sandström A; Remaud G; Koole LH; Chattopadhyaya J
    Nucleic Acids Symp Ser; 1989; (21):127-8. PubMed ID: 2608460
    [No Abstract]   [Full Text] [Related]  

  • 30. Structural principles of RNA catalysis in a 2'-5' lariat-forming ribozyme.
    Carlomagno T; Amata I; Codutti L; Falb M; Fohrer J; Masiewicz P; Simon B
    J Am Chem Soc; 2013 Mar; 135(11):4403-11. PubMed ID: 23472843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mimicking the first step of RNA splicing: an artificial DNA enzyme can synthesize branched RNA using an oligonucleotide leaving group as a 5'-exon analogue.
    Coppins RL; Silverman SK
    Biochemistry; 2005 Oct; 44(41):13439-46. PubMed ID: 16216067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An RNA conformational change between the two chemical steps of group II self-splicing.
    Chanfreau G; Jacquier A
    EMBO J; 1996 Jul; 15(13):3466-76. PubMed ID: 8670849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient synthesis of stably adenylated DNA and RNA adapters for microRNA capture using T4 RNA ligase 1.
    Song Y; Liu KJ; Wang TH
    Sci Rep; 2015 Oct; 5():15620. PubMed ID: 26500066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular biology. Excision of introns in lariat form.
    Weissmann C
    Nature; 1984 Sep 13-19; 311(5982):103-4. PubMed ID: 6472468
    [No Abstract]   [Full Text] [Related]  

  • 35. Probing RNA structure by lead cleavage.
    Pan T
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 6():Unit 6.3. PubMed ID: 18428864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A repertoire of intronic lariat RNAs reveals tissue-specific regulation and target mimicry potential in plants.
    Zhang Y; Zhang X; Tang Q; Li L; Jiang T; Fang Y; Zhang H; Zhai J; Ren G; Zheng B
    Sci China Life Sci; 2024 Jun; 67(6):1280-1291. PubMed ID: 38489006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assembly of long L-RNA by native RNA ligation.
    Yu CH; Kabza AM; Sczepanski JT
    Chem Commun (Camb); 2021 Oct; 57(81):10508-10511. PubMed ID: 34550128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ShapeShifter: a novel approach for identifying and quantifying stable lariat intronic species in RNAseq data.
    Taggart AJ; Fairbrother WG
    Quant Biol; 2018 Sep; 6(3):267-274. PubMed ID: 31404415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Universal labeling of 5'-triphosphate RNAs by artificial RNA ligase enzyme with broad substrate specificity.
    Haugner JC; Seelig B
    Chem Commun (Camb); 2013 Aug; 49(66):7322-4. PubMed ID: 23851643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemoproteomic discovery of a human RNA ligase.
    Yuan Y; Stumpf FM; Schlor LA; Schmidt OP; Saumer P; Huber LB; Frese M; Höllmüller E; Scheffner M; Stengel F; Diederichs K; Marx A
    Nat Commun; 2023 Feb; 14(1):842. PubMed ID: 36792600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.