These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1637358)

  • 1. Selective oxidation of histidine residues in proteins or peptides through the copper(II)-catalysed autoxidation of glucosone.
    Cheng RZ; Uchida K; Kawakishi S
    Biochem J; 1992 Jul; 285 ( Pt 2)(Pt 2):667-71. PubMed ID: 1637358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective oxidation of imidazole ring in histidine residues by the ascorbic acid-copper ion system.
    Uchida K; Kawakishi S
    Biochem Biophys Res Commun; 1986 Jul; 138(2):659-65. PubMed ID: 3017335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific oxidation of angiotensin I by copper(II) and L-ascorbate: conversion of histidine residues to 2-imidazolones.
    Uchida K; Kawakishi S
    Arch Biochem Biophys; 1990 Nov; 283(1):20-6. PubMed ID: 2241171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds.
    Baker JR; Zyzak DV; Thorpe SR; Baynes JW
    Clin Chem; 1994 Oct; 40(10):1950-5. PubMed ID: 7923778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoxidation of ascorbic acid catalyzed by the copper(II) bound to L-histidine oligopeptides, (His)iGly and acetyl-(His)i Gly (i=9, 19, 29). Relationship between catalytic activity and coordination mode.
    Ueda JI; Hanaki A; Hatano K; Nakajima T
    Chem Pharm Bull (Tokyo); 2000 Jul; 48(7):908-13. PubMed ID: 10923816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extent of the Oxidative Side Reactions to Peptides and Proteins During the CuAAC Reaction.
    Li S; Cai H; He J; Chen H; Lam S; Cai T; Zhu Z; Bark SJ; Cai C
    Bioconjug Chem; 2016 Oct; 27(10):2315-2322. PubMed ID: 27583984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific cleavage of histidine-containing peptides by copper(II).
    Allen G; Campbell RO
    Int J Pept Protein Res; 1996 Sep; 48(3):265-73. PubMed ID: 8897094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific oxidation of histidine residues in glycated insulin mediated by Cu2+.
    Cheng RZ; Kawakishi S
    Eur J Biochem; 1994 Aug; 223(3):759-64. PubMed ID: 8055951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins.
    Uchida K; Kawakishi S
    FEBS Lett; 1993 Oct; 332(3):208-10. PubMed ID: 8405458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination abilities of a fragment containing D1 and H12 residues of neuropeptide gamma and products of metal-catalyzed oxidation.
    Kowalik-Jankowska T; Jankowska E; Kasprzykowski F
    Inorg Chem; 2010 Mar; 49(5):2182-92. PubMed ID: 20121248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of histidine residues in the nonenzymic covalent attachment of glucose and ascorbic acid to protein.
    Hunt JV; Wolff SP
    Free Radic Res Commun; 1991; 14(4):279-87. PubMed ID: 1874457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulatory and inhibitory actions of proteins and amino acids on copper-catalysed free radical generation in the bulk phase.
    Simpson JA; Dean RT
    Free Radic Res Commun; 1990; 10(4-5):303-12. PubMed ID: 2289696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ergothioneine prevents copper-induced oxidative damage to DNA and protein by forming a redox-inactive ergothioneine-copper complex.
    Zhu BZ; Mao L; Fan RM; Zhu JG; Zhang YN; Wang J; Kalyanaraman B; Frei B
    Chem Res Toxicol; 2011 Jan; 24(1):30-4. PubMed ID: 21047085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation.
    Li S; Nguyen TH; Schöneich C; Borchardt RT
    Biochemistry; 1995 May; 34(17):5762-72. PubMed ID: 7727437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide.
    Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z
    Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper catalyzed oxidation of Alzheimer Abeta.
    Atwood CS; Huang X; Khatri A; Scarpa RC; Kim YS; Moir RD; Tanzi RE; Roher AE; Bush AI
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):777-83. PubMed ID: 10875439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model studies on the metal-catalyzed protein oxidation: structure of a possible His-Lys cross-link.
    Liu Y; Sun G; David A; Sayre LM
    Chem Res Toxicol; 2004 Jan; 17(1):110-8. PubMed ID: 14727925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper(II) interaction with the Human Prion 103-112 fragment - Coordination and oxidation.
    Csire G; Nagy L; Várnagy K; Kállay C
    J Inorg Biochem; 2017 May; 170():195-201. PubMed ID: 28260678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.