These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 16373824)
1. Redox activation of intracellular calcium release channels (ryanodine receptors) in the sustained phase of hypoxia-induced pulmonary vasoconstriction. Du W; Frazier M; McMahon TJ; Eu JP Chest; 2005 Dec; 128(6 Suppl):556S-558S. PubMed ID: 16373824 [TBL] [Abstract][Full Text] [Related]
2. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Gelband CH; Gelband H Circulation; 1997 Nov; 96(10):3647-54. PubMed ID: 9396467 [TBL] [Abstract][Full Text] [Related]
3. Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery. Jabr RI; Toland H; Gelband CH; Wang XX; Hume JR Br J Pharmacol; 1997 Sep; 122(1):21-30. PubMed ID: 9298524 [TBL] [Abstract][Full Text] [Related]
4. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. Robertson TP; Hague D; Aaronson PI; Ward JP J Physiol; 2000 Jun; 525 Pt 3(Pt 3):669-80. PubMed ID: 10856120 [TBL] [Abstract][Full Text] [Related]
5. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release. Connolly MJ; Prieto-Lloret J; Becker S; Ward JP; Aaronson PI J Physiol; 2013 Sep; 591(18):4473-98. PubMed ID: 23774281 [TBL] [Abstract][Full Text] [Related]
6. Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. Zheng YM; Wang QS; Rathore R; Zhang WH; Mazurkiewicz JE; Sorrentino V; Singer HA; Kotlikoff MI; Wang YX J Gen Physiol; 2005 Apr; 125(4):427-40. PubMed ID: 15795312 [TBL] [Abstract][Full Text] [Related]
7. Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Dahan D; Ducret T; Quignard JF; Marthan R; Savineau JP; Estève E Am J Physiol Lung Cell Mol Physiol; 2012 Nov; 303(9):L824-33. PubMed ID: 22962011 [TBL] [Abstract][Full Text] [Related]
8. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Archer SL; Weir EK; Reeve HL; Michelakis E Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663 [TBL] [Abstract][Full Text] [Related]
10. Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor-gated Ca2+ stores in pulmonary arterial smooth muscle cells. Yang XR; Lin MJ; Yip KP; Jeyakumar LH; Fleischer S; Leung GP; Sham JS Am J Physiol Lung Cell Mol Physiol; 2005 Aug; 289(2):L338-48. PubMed ID: 15863441 [TBL] [Abstract][Full Text] [Related]
11. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Sommer N; Strielkov I; Pak O; Weissmann N Eur Respir J; 2016 Jan; 47(1):288-303. PubMed ID: 26493804 [TBL] [Abstract][Full Text] [Related]
12. Gap junctions support the sustained phase of hypoxic pulmonary vasoconstriction by facilitating calcium sensitization. Kizub IV; Strielkov IV; Shaifta Y; Becker S; Prieto-Lloret J; Snetkov VA; Soloviev AI; Aaronson PI; Ward JP Cardiovasc Res; 2013 Aug; 99(3):404-11. PubMed ID: 23708740 [TBL] [Abstract][Full Text] [Related]
13. Role of capacitative Ca2+ entry but not Na+/Ca2+ exchange in hypoxic pulmonary vasoconstriction in rat intrapulmonary arteries. Becker S; Knock GA; Snetkov V; Ward JP; Aaronson PI Novartis Found Symp; 2006; 272():259-68; discussion 268-79. PubMed ID: 16686440 [TBL] [Abstract][Full Text] [Related]
14. Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction. Zhang J; Zhou J; Cai L; Lu Y; Wang T; Zhu L; Hu Q Antioxid Redox Signal; 2012 Aug; 17(3):471-84. PubMed ID: 22098336 [TBL] [Abstract][Full Text] [Related]
15. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Archer SL; Wu XC; Thébaud B; Nsair A; Bonnet S; Tyrrell B; McMurtry MS; Hashimoto K; Harry G; Michelakis ED Circ Res; 2004 Aug; 95(3):308-18. PubMed ID: 15217912 [TBL] [Abstract][Full Text] [Related]
16. Role of FKBP12.6 in hypoxia- and norepinephrine-induced Ca2+ release and contraction in pulmonary artery myocytes. Zheng YM; Mei QB; Wang QS; Abdullaev I; Lai FA; Xin HB; Kotlikoff MI; Wang YX Cell Calcium; 2004 Apr; 35(4):345-55. PubMed ID: 15036951 [TBL] [Abstract][Full Text] [Related]
17. IP3-mediated Ca2+ increases do not involve the ryanodine receptor, but ryanodine receptor antagonists reduce IP3-mediated Ca2+ increases in guinea-pig colonic smooth muscle cells. MacMillan D; Chalmers S; Muir TC; McCarron JG J Physiol; 2005 Dec; 569(Pt 2):533-44. PubMed ID: 16195318 [TBL] [Abstract][Full Text] [Related]
18. Hypoxic pulmonary vasoconstriction in isolated mouse pulmonary arterial vessels. Strielkov I; Krause NC; Sommer N; Schermuly RT; Ghofrani HA; Grimminger F; Gudermann T; Dietrich A; Weissmann N Exp Physiol; 2018 Sep; 103(9):1185-1191. PubMed ID: 29917290 [TBL] [Abstract][Full Text] [Related]
19. Important Role of Sarcoplasmic Reticulum Ca Yang Z; Song T; Truong L; Reyes-García J; Wang L; Zheng YM; Wang YX Antioxid Redox Signal; 2020 Mar; 32(7):447-462. PubMed ID: 31456413 [No Abstract] [Full Text] [Related]
20. Role of Ryanodine Type 2 Receptors in Elementary Ca Kaßmann M; Szijártó IA; García-Prieto CF; Fan G; Schleifenbaum J; Anistan YM; Tabeling C; Shi Y; le Noble F; Witzenrath M; Huang Y; Markó L; Nelson MT; Gollasch M J Am Heart Assoc; 2019 May; 8(9):e010090. PubMed ID: 31030596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]