These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16374288)

  • 1. Determination of significant parameters for eye injury risk from projectiles.
    Duma SM; Ng TP; Kennedy EA; Stitzel JD; Herring IP; Kuhn F
    J Trauma; 2005 Oct; 59(4):960-4. PubMed ID: 16374288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk functions for human and porcine eye rupture based on projectile characteristics of blunt objects.
    Kennedy EA; Ng TP; McNally C; Stitzel JD; Duma SM
    Stapp Car Crash J; 2006 Nov; 50():651-71. PubMed ID: 17311182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of eye injury risk from projectile shooting toys using the focus headform - biomed 2009.
    Bisplinghoff JA; Duma SM
    Biomed Sci Instrum; 2009; 45():107-12. PubMed ID: 19369748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating eye injury risk of Airsoft pellet guns by parametric risk functions.
    Kennedy EA; Ng TP; Duma SM
    Biomed Sci Instrum; 2006; 42():7-12. PubMed ID: 16817577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of different projectiles in matched experimental eye impact simulations.
    Weaver AA; Kennedy EA; Duma SM; Stitzel JD
    J Biomech Eng; 2011 Mar; 133(3):031002. PubMed ID: 21303178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the risk of eye injuries: intraocular pressure during high speed projectile impacts.
    Duma SM; Bisplinghoff JA; Senge DM; McNally C; Alphonse VD
    Curr Eye Res; 2012 Jan; 37(1):43-9. PubMed ID: 22029489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blunt eye trauma: empirical histopathologic paintball impact thresholds in fresh mounted porcine eyes.
    Sponsel WE; Gray W; Scribbick FW; Stern AR; Weiss CE; Groth SL; Walker JD
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5157-66. PubMed ID: 21508104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eye injury risk from water stream impact: biomechanically based design parameters for water toy and park design.
    Duma SM; Bisplinghoff JA; Senge DM; McNally C; Alphonse VD
    Curr Eye Res; 2012 Apr; 37(4):279-85. PubMed ID: 22440159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye injuries from airbags with seamless module covers.
    Duma SM; Crandall JR
    J Trauma; 2000 Apr; 48(4):786-9. PubMed ID: 10780622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refrigeration and freezing of porcine tissue does not affect the retardation of fragment simulating projectiles.
    Breeze J; Carr DJ; Mabbott A; Beckett S; Clasper JC
    J Forensic Leg Med; 2015 May; 32():77-83. PubMed ID: 25882156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye injury risk associated with remote control toy helicopter blades.
    Alphonse VD; Kemper AR; Rowson S; Duma SM
    Biomed Sci Instrum; 2012; 48():20-6. PubMed ID: 22846260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Retrospective analysis of 417 cases of contusion and rupture of the globe with frequent avoidable causes of trauma: the Erlangen Ocular Contusion-Registry (EOCR) 1985 - 1995].
    Viestenz A; Küchle M
    Klin Monbl Augenheilkd; 2001 Oct; 218(10):662-9. PubMed ID: 11706382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a synthetic eye and orbit for estimating the potential for globe rupture due to specific impact conditions.
    Kennedy EA; Inzana JA; McNally C; Duma SM; Depinet PJ; Sullenberger KH; Morgan CR; Brozoski FT
    Stapp Car Crash J; 2007 Oct; 51():381-400. PubMed ID: 18278605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular injuries in basketball and baseball: what are the risks and how can we prevent them?
    Heimmel MR; Murphy MA
    Curr Sports Med Rep; 2008; 7(5):284-8. PubMed ID: 18772689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gunshot Wounds: Ballistics and Imaging Findings.
    Pinto A; Russo A; Reginelli A; Iacobellis F; Di Serafino M; Giovine S; Romano L
    Semin Ultrasound CT MR; 2019 Feb; 40(1):25-35. PubMed ID: 30686364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.
    Werner R; Schultz B; Bockholdt B; Ekkernkamp A; Frank M
    Int J Legal Med; 2017 May; 131(3):685-690. PubMed ID: 28078445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injury risk prediction from computational simulations of ocular blast loading.
    Weaver AA; Stitzel SM; Stitzel JD
    Biomech Model Mechanobiol; 2017 Apr; 16(2):463-477. PubMed ID: 27644440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forensic imaging of projectiles using cone-beam computed tomography.
    von See C; Bormann KH; Schumann P; Goetz F; Gellrich NC; Rücker M
    Forensic Sci Int; 2009 Sep; 190(1-3):38-41. PubMed ID: 19505778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can postmortem MRI be used to assess trajectories in gunshot victims?
    Luijten M; Haest II; van Kan RA; van Lohuizen W; Kroll J; Schnerr RS; Hermsen R; Hofman PA
    Int J Legal Med; 2016 Mar; 130(2):457-62. PubMed ID: 26518298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of airbag impact on eyes after photorefractive keratectomy by finite element analysis method.
    Uchio E; Watanabe Y; Kadonosono K; Matsuoka Y; Goto S
    Graefes Arch Clin Exp Ophthalmol; 2003 Jun; 241(6):497-504. PubMed ID: 12756579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.