BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16375278)

  • 1. Low temperature properties of acetonitrile confined in MCM-41.
    Kittaka S; Iwashita T; Serizawa A; Kranishi M; Takahara S; Kuroda Y; Mori T; Yamaguchi T
    J Phys Chem B; 2005 Dec; 109(49):23162-9. PubMed ID: 16375278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of confinement on the fluid properties of ammonia in mesopores of MCM-41 and SBA-15.
    Kittaka S; Morimura M; Ishimaru S; Morino A; Ueda K
    Langmuir; 2009 Feb; 25(3):1718-24. PubMed ID: 19170649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15.
    Kittaka S; Ishimaru S; Kuranishi M; Matsuda T; Yamaguchi T
    Phys Chem Chem Phys; 2006 Jul; 8(27):3223-31. PubMed ID: 16902715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer water molecules in vanadium pentoxide hydrate. 8. Dynamic properties by quasi-elastic neutron scattering.
    Kittaka S; Takahara S; Yamaguchi T; Funel MC
    Langmuir; 2005 Feb; 21(4):1389-97. PubMed ID: 15697285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of methanol confined in MCM-41 investigated by large-angle X-ray scattering technique.
    Takamuku T; Maruyama H; Kittaka S; Takahara S; Yamaguchi T
    J Phys Chem B; 2005 Jan; 109(2):892-9. PubMed ID: 16866456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2H-solid state NMR and DSC study of isobutyric acid in mesoporous silica materials.
    Vyalikh A; Emmler T; Shenderovich I; Zeng Y; Findenegg GH; Buntkowsky G
    Phys Chem Chem Phys; 2007 Jun; 9(18):2249-57. PubMed ID: 17487322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase diagram and glass transition of confined benzene.
    Xia Y; Dosseh G; Morineau D; Alba-Simionesco C
    J Phys Chem B; 2006 Oct; 110(39):19735-44. PubMed ID: 17004844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl group dynamics in glassy, polycrystalline, and liquid coenzyme Q10 studied by quasielastic neutron scattering.
    Smuda C; Busch S; Wagner B; Unruh T
    J Chem Phys; 2008 Aug; 129(7):074507. PubMed ID: 19044783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study.
    Kittaka S; Takahara S; Matsumoto H; Wada Y; Satoh TJ; Yamaguchi T
    J Chem Phys; 2013 May; 138(20):204714. PubMed ID: 23742507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform infrared and quasielectron neutron scattering studies on the binding modes of methanol molecules in the confined spaces of HMCM-41 and HZSM-5: role of pore structure and surface acid sites.
    Gupta NM; Kumar D; Kamble VS; Mitra S; Mukhopadhyay R; Kartha VB
    J Phys Chem B; 2006 Mar; 110(10):4815-23. PubMed ID: 16526719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of simple gases in MCM-41 materials: the role of surface roughness.
    Coasne B; Hung FR; Pellenq RJ; Siperstein FR; Gubbins KE
    Langmuir; 2006 Jan; 22(1):194-202. PubMed ID: 16378420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics of n-hexane: a quasi-elastic neutron scattering study on the bulk and spatially nanochannel-confined liquid.
    Hofmann T; Wallacher D; Mayorova M; Zorn R; Frick B; Huber P
    J Chem Phys; 2012 Mar; 136(12):124505. PubMed ID: 22462872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of surface water in ZrO2 studied by quasielastic neutron scattering.
    Mamontov E
    J Chem Phys; 2004 Nov; 121(18):9087-97. PubMed ID: 15527375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron spin echo measurements of monolayer and capillary condensed water in MCM-41 at low temperatures.
    Yoshida K; Yamaguchi T; Kittaka S; Bellissent-Funel MC; Fouquet P
    J Phys Condens Matter; 2012 Feb; 24(6):064101. PubMed ID: 22277165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melting mechanism of monolayers adsorbed in cylindrical pores: the influence of the pore wall roughness.
    Kuchta B; Firlej L; Denoyel R; Rols S; Johnson MR; Coasne B
    J Chem Phys; 2008 May; 128(18):184703. PubMed ID: 18532832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase separation of acetonitrile-water mixtures and minimizing of ice crystallites from there in confinement of MCM-41.
    Kittaka S; Kuranishi M; Ishimaru S; Umahara O
    J Chem Phys; 2007 Mar; 126(9):091103. PubMed ID: 17362095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of pore sizes and volumes of porous materials by 129Xe NMR of xenon gas dissolved in a medium.
    Telkki VV; Lounila J; Jokisaari J
    J Phys Chem B; 2005 Dec; 109(51):24343-51. PubMed ID: 16375434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials.
    Peng B; Yu YX
    Langmuir; 2008 Nov; 24(21):12431-9. PubMed ID: 18839971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface phase transition of C12E1 at the air/water interface: a study by dynamic surface tension, external RA FT-IR, and 2D IR correlation methods.
    Azizian S; Shibata K; Matsuda T; Takiue T; Matsubara H; Aratono M
    J Phys Chem B; 2006 Aug; 110(34):17034-42. PubMed ID: 16927997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.