These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16375331)

  • 41. Quasiparticle Level Alignment for Photocatalytic Interfaces.
    Migani A; Mowbray DJ; Zhao J; Petek H; Rubio A
    J Chem Theory Comput; 2014 May; 10(5):2103-13. PubMed ID: 26580537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO(2) surface. I. Adsorption on the stoichiometric surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Aug; 127(8):084704. PubMed ID: 17764281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electronic structure of methoxy-, bromo-, and nitrobenzene grafted onto Si(111).
    Hunger R; Jaegermann W; Merson A; Shapira Y; Pettenkofer C; Rappich J
    J Phys Chem B; 2006 Aug; 110(31):15432-41. PubMed ID: 16884265
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electron dynamics at polyacene/Au(111) interfaces.
    Lindstrom CD; Muntwiler M; Zhu XY
    J Phys Chem B; 2007 Jun; 111(24):6913-20. PubMed ID: 17567099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electronic Characterization of Solid Surfaces: Determination of the energy levels of electrons at surfaces is now possible over a wide energy range.
    Hagstrum HD
    Science; 1972 Oct; 178(4058):275-82. PubMed ID: 17735469
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interface electronic states and molecular structure of a triarylamine based hole conductor on rutile TiO2(110).
    Johansson EM; Odelius M; Karlsson PG; Siegbahn H; Sandell A; Rensmo H
    J Chem Phys; 2008 May; 128(18):184709. PubMed ID: 18532838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electronic and molecular surface structure of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2: a photoelectron spectroscopy study.
    Johansson EM; Hedlund M; Siegbahn H; Rensmo H
    J Phys Chem B; 2005 Dec; 109(47):22256-63. PubMed ID: 16853898
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The growth of perylene on Ru(0001).
    Honying M; Han H; Qiao C; Richardson NV; Yue W; Jianhua Z; Haiyang L; Pimo H; Shining B
    J Chem Phys; 2004 Oct; 121(14):6972-7. PubMed ID: 15473758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces.
    Bullard JW; Cima MJ
    Langmuir; 2006 Nov; 22(24):10264-71. PubMed ID: 17107031
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interface and molecular electronic structure vs tunneling characteristics of CH3- and CF3-terminated thiol monolayers on Au(111).
    Sun Q; Selloni A
    J Phys Chem A; 2006 Oct; 110(40):11396-400. PubMed ID: 17020248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Seleno groups control the energy-level alignment between conjugated organic molecules and metals.
    Niederhausen J; Duhm S; Heimel G; Bürker C; Xin Q; Wilke A; Vollmer A; Schreiber F; Kera S; Rabe JP; Ueno N; Koch N
    J Chem Phys; 2014 Jan; 140(1):014705. PubMed ID: 24410235
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binding at molecule/gold transport interfaces. V. Comparison of different metals and molecular bridges.
    Basch H; Ratner MA
    J Chem Phys; 2005 Dec; 123(23):234704. PubMed ID: 16392941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of the electronic properties of Snn- clusters (n=4-45) and the semiconductor-to-metal transition.
    Cui LF; Wang LM; Wang LS
    J Chem Phys; 2007 Feb; 126(6):064505. PubMed ID: 17313227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electronic and chemical properties of tin-doped indium oxide (ITO) surfaces and ITO/ZnPc interfaces studied in-situ by photoelectron spectroscopy.
    Gassenbauer Y; Klein A
    J Phys Chem B; 2006 Mar; 110(10):4793-801. PubMed ID: 16526716
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CO adsorption on Ag(100) and Ag/MgO(100).
    Qin C; Sremaniak LS; Whitten JL
    J Phys Chem B; 2006 Jun; 110(23):11272-6. PubMed ID: 16771396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electronic states of a C70 monolayer on the surface of Ag(111).
    Wang P; Meng L; Wang XB; Li YJ; Sheng CQ; Wang JO; Qian HJ; Ibrahim K; Li HN
    J Phys Condens Matter; 2011 Oct; 23(39):395002. PubMed ID: 21891834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of solid surfaces modified by Langmuir-Blodgett monolayers using sum-frequency vibrational spectroscopy and X-ray photoelectron spectroscopy.
    Keszthelyi T; Paszti Z; Rigó T; Hakkel O; Telegdi J; Guczi L
    J Phys Chem B; 2006 May; 110(17):8701-14. PubMed ID: 16640426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The electronic structure and adsorption geometry of L-histidine on Cu(110).
    Feyer V; Plekan O; Skála T; Cháb V; Matolín V; Prince KC
    J Phys Chem B; 2008 Oct; 112(43):13655-60. PubMed ID: 18834171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular origins of wettability of hydrophobic poly(vinylidene fluoride) microporous membranes on poly(vinyl alcohol) adsorption: Surface and interface analysis by XPS.
    Gholap SG; Badiger MV; Gopinath CS
    J Phys Chem B; 2005 Jul; 109(29):13941-7. PubMed ID: 16852749
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electron transport in a pi-stacking molecular chain.
    Geng WT; Oda M; Nara J; Kondo H; Ohno T
    J Phys Chem B; 2008 Mar; 112(10):2795-800. PubMed ID: 18278896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.