BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16375366)

  • 1. High conversion synthesis of pyrene end functionalized polyrotaxane based on poly(ethylene oxide) and alpha-cyclodextrins.
    Jarroux N; Guégan P; Cheradame H; Auvray L
    J Phys Chem B; 2005 Dec; 109(50):23816-22. PubMed ID: 16375366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two independent ways of preparing hypercharged hydrolyzable polyaminorotaxane.
    Pérès B; Richardeau N; Jarroux N; Guégan P; Auvray L
    Biomacromolecules; 2008 Jul; 9(7):2007-13. PubMed ID: 18517251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and self-organization kinetics of alpha-CD/PEO-based pseudo-polyrotaxanes in water. A specific behavior at 30 degrees C.
    Travelet C; Schlatter G; Hébraud P; Brochon C; Lapp A; Hadziioannou G
    Langmuir; 2009 Aug; 25(15):8723-34. PubMed ID: 19301842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A.
    Ooya T; Eguchi M; Yui N
    J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of a polydisperse polyrotaxane based on poly(ethylene oxide) and α-cyclodextrins using nanoelectrospray and LTQ-Orbitrap.
    Przybylski C; Jarroux N
    Anal Chem; 2011 Nov; 83(22):8460-7. PubMed ID: 21958205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent- and thermoresponsive polyrotaxanes with beta-cyclodextrin dispersed/aggregated structures on a pluronic F127 backbone.
    Wang J; Gao P; Ye L; Zhang AY; Feng ZG
    J Phys Chem B; 2010 Apr; 114(16):5342-9. PubMed ID: 20373770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers.
    Yang C; Wang X; Li H; Goh SH; Li J
    Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of polyrotaxane-amino acid conjugates: a new synthetic pathway for amino-functionalized polyrotaxanes.
    Araki J; Kagaya K; Ohkawa K
    Biomacromolecules; 2009 Jul; 10(7):1947-54. PubMed ID: 19545123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of calibrated poly(3,4-ethylenedioxythiophene) latexes in aqueous dispersant media.
    Mumtaz M; Lecommandoux S; Cloutet E; Cramail H
    Langmuir; 2008 Oct; 24(20):11911-20. PubMed ID: 18771299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis of a multiblock osteotropic polyrotaxane by copper(I)-catalyzed huisgen 1,3-dipolar cycloaddition.
    Hein CD; Liu XM; Chen F; Cullen DM; Wang D
    Macromol Biosci; 2010 Dec; 10(12):1544-56. PubMed ID: 20954201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the mechanism of trypsin inhibition by the numbers of alpha-cyclodextrins and carboxyl groups in carboxyethylester-polyrotaxanes.
    Eguchi M; Ooya T; Yui N
    J Control Release; 2004 Apr; 96(2):301-7. PubMed ID: 15081220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces.
    Inoue Y; Ye L; Ishihara K; Yui N
    Colloids Surf B Biointerfaces; 2012 Jan; 89():223-7. PubMed ID: 21974908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst- and solvent-free click synthesis of cyclodextrin-based polyrotaxanes exploiting a nitrile N-oxide.
    Jang K; Miura K; Koyama Y; Takata T
    Org Lett; 2012 Jun; 14(12):3088-91. PubMed ID: 22676854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization, and pH-triggered dethreading of alpha-cyclodextrin-poly(ethylene glycol) polyrotaxanes bearing cleavable endcaps.
    Loethen S; Ooya T; Choi HS; Yui N; Thompson DH
    Biomacromolecules; 2006 Sep; 7(9):2501-6. PubMed ID: 16961310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated alpha-cyclodextrins.
    Kataoka T; Kidowaki M; Zhao C; Minamikawa H; Shimizu T; Ito K
    J Phys Chem B; 2006 Dec; 110(48):24377-83. PubMed ID: 17134190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of beta-cyclodextrin polyrotaxane: photodimerization of pseudo-polyrotaxane with 2-anthryl and triphenylmethyl groups at the ends of poly(propylene glycol).
    Okada M; Harada A
    Org Lett; 2004 Feb; 6(3):361-4. PubMed ID: 14748593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery.
    Ooya T; Choi HS; Yamashita A; Yui N; Sugaya Y; Kano A; Maruyama A; Akita H; Ito R; Kogure K; Harashima H
    J Am Chem Soc; 2006 Mar; 128(12):3852-3. PubMed ID: 16551060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous laponite clay dispersions in the presence of poly(ethylene oxide) or poly(propylene oxide) oligomers and their triblock copolymers.
    De Lisi R; Gradzielski M; Lazzara G; Milioto S; Muratore N; Prévost S
    J Phys Chem B; 2008 Aug; 112(31):9328-36. PubMed ID: 18620453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mono-, di-, or triazidated cyclodextrin-based polyrotaxanes for facile and efficient functionalization via click chemistry.
    Hyun H; Yui N
    Macromol Rapid Commun; 2011 Feb; 32(3):326-31. PubMed ID: 21433179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.