BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16375377)

  • 1. Molecular numbers in core and shell: structural dependence of reactivity of alkylcarboxylate-stabilized silver nanoparticles.
    Yang N; Aoki K
    J Phys Chem B; 2005 Dec; 109(50):23911-7. PubMed ID: 16375377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.
    Kim JH; Bryan WW; Lee TR
    Langmuir; 2008 Oct; 24(19):11147-52. PubMed ID: 18788760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds.
    Maduraiveeran G; Ramaraj R
    Anal Chem; 2009 Sep; 81(18):7552-60. PubMed ID: 19691270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of oxygen on the optical properties of silver nanoparticles.
    Renteria-Tapia VM; García-Macedo J
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6545-50. PubMed ID: 19205238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate.
    Vigneshwaran N; Kathe AA; Varadarajan PV; Nachane RP; Balasubramanya RH
    Langmuir; 2007 Jun; 23(13):7113-7. PubMed ID: 17518485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Ag/Pt core-shell nanoparticles by UV-vis absorption, resonance light-scattering techniques.
    Chen L; Zhao W; Jiao Y; He X; Wang J; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):484-90. PubMed ID: 17329151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by PAMAM dendrimer.
    Endo T; Yoshimura T; Esumi K
    J Colloid Interface Sci; 2005 Jun; 286(2):602-9. PubMed ID: 15897077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical switching of coupled plasmons of Ag-nanoparticles by photoisomerisation of an azobenzene ligand.
    Ahonen P; Schiffrin DJ; Paprotny J; Kontturi K
    Phys Chem Chem Phys; 2007 Feb; 9(5):651-8. PubMed ID: 17242747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoresponsive polymer-stabilized silver nanoparticles.
    Guo L; Nie J; Du B; Peng Z; Tesche B; Kleinermanns K
    J Colloid Interface Sci; 2008 Mar; 319(1):175-81. PubMed ID: 18068715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green synthesis and characterization of polymer-stabilized silver nanoparticles.
    Medina-Ramirez I; Bashir S; Luo Z; Liu JL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):185-91. PubMed ID: 19539451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of stable organosols of silver nanoparticles by electrochemical dissolution of silver in DMSO.
    Wadkar MM; Chaudhari VR; Haram SK
    J Phys Chem B; 2006 Oct; 110(42):20889-94. PubMed ID: 17048903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion.
    Sloufová I; Sisková K; Vlcková B; Stepánek J
    Phys Chem Chem Phys; 2008 Apr; 10(16):2233-42. PubMed ID: 18404231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendrimer-encapsulated silver nanoparticles as a novel electrochemical label for sensitive immunosensors.
    Stofik M; Strýhal Z; Malý J
    Biosens Bioelectron; 2009 Mar; 24(7):1918-23. PubMed ID: 19022648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology.
    Gong JL; Jiang JH; Liang Y; Shen GL; Yu RQ
    J Colloid Interface Sci; 2006 Jun; 298(2):752-6. PubMed ID: 16457836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake.
    Chung YC; Chen IH; Chen CJ
    Biomaterials; 2008 Apr; 29(12):1807-16. PubMed ID: 18242693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopy property of Ag nanoparticles.
    Zhao Y; Jiang Y; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Dec; 65(5):1003-6. PubMed ID: 16716648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Productive synthesis and properties of polydiaminoanthraquinone and its pure self-stabilized nanoparticles with widely adjustable electroconductivity.
    Li XG; Li H; Huang MR
    Chemistry; 2007; 13(31):8884-96. PubMed ID: 17654455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering.
    Panigrahi S; Praharaj S; Basu S; Ghosh SK; Jana S; Pande S; Vo-Dinh T; Jiang H; Pal T
    J Phys Chem B; 2006 Jul; 110(27):13436-44. PubMed ID: 16821868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dithiocarbamate-capped silver nanoparticles.
    Tong MC; Chen W; Sun J; Ghosh D; Chen S
    J Phys Chem B; 2006 Oct; 110(39):19238-42. PubMed ID: 17004775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.