These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 16375396)

  • 41. A study of the redox properties of MoOx/SiO2.
    Ohler N; Bell AT
    J Phys Chem B; 2005 Dec; 109(49):23419-29. PubMed ID: 16375315
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of active sites over reduced Ni-Mo/Al(2)O(3) catalysts for hydrogenation of linear aldehydes.
    Wang X; Ozkan US
    J Phys Chem B; 2005 Feb; 109(5):1882-90. PubMed ID: 16851170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elucidation of the molecular structure of hydrated vanadium oxide species by X-ray absorption spectroscopy: correlation between the V...V coordination number and distance and the point of zero charge of the support oxide.
    Keller DE; Koningsberger DC; Weckhuysen BM
    Phys Chem Chem Phys; 2006 Nov; 8(41):4814-24. PubMed ID: 17043726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catalytic oxidation of H2 by N2O in the gas phase: O-atom transport with atomic metal cations.
    Blagojevic V; Bozović A; Orlova G; Bohme DK
    J Phys Chem A; 2008 Oct; 112(41):10141-6. PubMed ID: 18808088
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular structure-activity relationships for the oxidation of organic compounds using mesoporous silica catalysts derivatised with bis(halogeno)dioxomolybdenum(VI) complexes.
    Nunes CD; Valente AA; Pillinger M; Rocha J; Gonçalves IS
    Chemistry; 2003 Sep; 9(18):4380-90. PubMed ID: 14502624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomic XAFS as a tool to probe the reactivity of metal oxide catalysts: quantifying metal oxide support effects.
    Keller DE; Airaksinen SM; Krause AO; Weckhuysen BM; Koningsberger DC
    J Am Chem Soc; 2007 Mar; 129(11):3189-97. PubMed ID: 17323947
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of the active sites of Co-Mo Hydrodesulfurization catalysts as studied by magnetic susceptibility measurement and NO adsorption.
    Okamoto Y; Kawano M; Kawabata T; Kubota T; Hiromitsu I
    J Phys Chem B; 2005 Jan; 109(1):288-96. PubMed ID: 16851015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Manipulation of electrocatalytic reaction pathways through surface chemistry: in situ Fourier transform infrared spectroscopic studies of 1,3-butanediol oxidation on a Pt surface modified with Sb and S adatoms.
    Wu QH; Li NH; Sun SG
    J Phys Chem B; 2006 Jun; 110(23):11383-90. PubMed ID: 16771410
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemistry of niobium(V) in sulfuric and methanesulfonic acids: formation of the Nb3O2(SO4)6(H2O)(3)(5-) cluster and designed electrochemical generation of "Nb3O2" core clusters by double potential pulse electrolysis.
    May M; Gantt M; Hoadley C; Batten T; Sayers W; Katovic V
    Inorg Chem; 2003 Nov; 42(22):7137-47. PubMed ID: 14577782
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanostructured Cu(x)Ce1-xO2-y mixed oxide catalysts: characterization and WGS activity tests.
    Pintar A; Batista J; Hocevar S
    J Colloid Interface Sci; 2007 Mar; 307(1):145-57. PubMed ID: 17188286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of MoVSb oxide catalyst for partial oxidation of isobutane by combinatorial approaches.
    Paul JS; Janssens R; Denayer JF; Baron GV; Jacobs PA
    J Comb Chem; 2005; 7(3):407-13. PubMed ID: 15877469
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dehydrogenation of ethylbenzene to styrene using Pt, Mo, and Pt-Mo catalysts supported on clay nanocomposites.
    Morán C; González E; Sánchez J; Solano R; Carruyo G; Moronta A
    J Colloid Interface Sci; 2007 Nov; 315(1):164-9. PubMed ID: 17603070
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nature, density, and catalytic role of exposed species on dispersed VOx/CrOx/Al2O3 catalysts.
    Yang S; Iglesia E; Bell AT
    J Phys Chem B; 2006 Feb; 110(6):2732-9. PubMed ID: 16471878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation, Characterization, and Catalytic Properties of Ultrafine Mixed Fe-Mo Oxide Particles.
    Kuang W; Fan Y; Chen Y
    J Colloid Interface Sci; 1999 Jul; 215(2):364-369. PubMed ID: 10419672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interplay between defect structure and catalytic activity in the Mo(10-x)V(x)O(y) mixed-oxide system.
    Jakes P; Blickhan N; Jekewitz T; Drochner A; Vogel H; Fuess H; Eichel RA
    Chemphyschem; 2011 Dec; 12(18):3578-83. PubMed ID: 22147498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons.
    Gutiérrez-Ortiz JI; de Rivas B; López-Fonseca R; Martín S; González-Velasco JR
    Chemosphere; 2007 Jun; 68(6):1004-12. PubMed ID: 17395240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidation of methanol to formaldehyde on supported vanadium oxide catalysts compared to gas phase molecules.
    Döbler J; Pritzsche M; Sauer J
    J Am Chem Soc; 2005 Aug; 127(31):10861-8. PubMed ID: 16076191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multislice frozen phonon high angle annular dark-field image simulation study of Mo-V-Nb-Te-O complex oxidation catalyst "M1".
    Blom DA
    Ultramicroscopy; 2012 Jan; 112(1):69-75. PubMed ID: 22104023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-temperature reduction of NO(2) on oxidized Mo(110).
    Deiner LJ; Kang DH; Friend CM
    J Phys Chem B; 2005 Jul; 109(26):12826-31. PubMed ID: 16852590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.