These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16375443)

  • 1. Computer simulations of catanionic surfactants adsorbed at air/water interfaces.
    Rodriguez J; Clavero E; Laria D
    J Phys Chem B; 2005 Dec; 109(51):24427-33. PubMed ID: 16375443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulations of catanionic surfactants adsorbed at air/water interfaces. II. Full coverage.
    Clavero E; Rodriguez J; Laria D
    J Chem Phys; 2007 Sep; 127(12):124704. PubMed ID: 17902928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces.
    Shen Y; Couzis A; Koplik J; Maldarelli C; Tomassone MS
    Langmuir; 2005 Dec; 21(26):12160-70. PubMed ID: 16342988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolayer of aerosol-OT surfactants adsorbed at the air/water interface: an atomistic computer simulation study.
    Chanda J; Chakraborty S; Bandyopadhyay S
    J Phys Chem B; 2005 Jan; 109(1):471-9. PubMed ID: 16851038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gemini surfactants at the air/water interface: a fully atomistic molecular dynamics study.
    Khurana E; Nielsen SO; Klein ML
    J Phys Chem B; 2006 Nov; 110(44):22136-42. PubMed ID: 17078649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of surfactant monolayers adsorbed at the oil/water and air/water interfaces.
    Chanda J; Bandyopadhyay S
    J Phys Chem B; 2006 Nov; 110(46):23482-8. PubMed ID: 17107202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of solvent physical parameters on the aggregation process of catanionic amphiphiles.
    Ramsch R; Cassel S; Rico-Lattes I
    Langmuir; 2009 Jun; 25(12):6733-8. PubMed ID: 19505155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surfactant conformation on the structures of small size nonionic reverse micelles: a molecular dynamics simulation study.
    Abel S; Waks M; Marchi M; Urbach W
    Langmuir; 2006 Oct; 22(22):9112-20. PubMed ID: 17042518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermotropic phase behavior of triple-chained catanionic surfactants with varying headgroup chemistry.
    Marques EF; Brito RO; Wang Y; Silva BF
    J Colloid Interface Sci; 2006 Feb; 294(1):240-7. PubMed ID: 16125191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsolvation of the sodium and iodide ions and their ion pair in acetonitrile clusters: a theoretical study.
    Nguyen TN; Hughes SR; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):621-35. PubMed ID: 18183958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of mixed lennard-jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Nov; 23(23):11580-6. PubMed ID: 17918866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of AOT-water/formamide reverse micelles: structural and dynamical properties.
    Pomata MH; Laria D; Skaf MS; Elola MD
    J Chem Phys; 2008 Dec; 129(24):244503. PubMed ID: 19123513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation energy transfer in ion pairs of polymethine cyanine dyes: efficiency and dynamics.
    Ponterini G; Fiorini M; Vanossi D; Tatikolov AS; Momicchioli F
    J Phys Chem A; 2006 Jun; 110(24):7527-38. PubMed ID: 16774193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation of coumarin 314 at water/air interfaces containing anionic surfactants. I. Low coverage.
    Pantano DA; Sonoda MT; Skaf MS; Laria D
    J Phys Chem B; 2005 Apr; 109(15):7365-72. PubMed ID: 16851843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implicit solvent simulations of DPC micelle formation.
    Lazaridis T; Mallik B; Chen Y
    J Phys Chem B; 2005 Aug; 109(31):15098-106. PubMed ID: 16852911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion exchange in catanionic mixtures: from ion pair amphiphiles to surfactant mixtures.
    Maurer E; Belloni L; Zemb T; Carrière D
    Langmuir; 2007 Jun; 23(12):6554-60. PubMed ID: 17497812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixtures of sodium dodecyl sulfate/dodecanol at the air/water interface by computer simulations.
    Domínguez H; Rivera M
    Langmuir; 2005 Aug; 21(16):7257-62. PubMed ID: 16042450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.