BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 16375508)

  • 1. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-induced conformational transition of a model elastin-like peptide GVG(VPGVG)(3) in water.
    Krukau A; Brovchenko I; Geiger A
    Biomacromolecules; 2007 Jul; 8(7):2196-202. PubMed ID: 17567170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the dynamic transition upon pressurization of crystalline proteins.
    Oleinikova A; Smolin N; Brovchenko I
    J Phys Chem B; 2006 Oct; 110(39):19619-24. PubMed ID: 17004829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of spanning water networks on protein surfaces via 2D percolation transition.
    Oleinikova A; Smolin N; Brovchenko I; Geiger A; Winter R
    J Phys Chem B; 2005 Feb; 109(5):1988-98. PubMed ID: 16851183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of spanning water networks at protein surfaces.
    Smolin N; Oleinikova A; Brovchenko I; Geiger A; Winter R
    J Phys Chem B; 2005 Jun; 109(21):10995-1005. PubMed ID: 16852340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of the hydrogen-bonded water network in the hydration shell of islet amyloid polypeptide.
    Brovchenko I; Andrews MN; Oleinikova A
    J Phys Condens Matter; 2011 Apr; 23(15):155105. PubMed ID: 21451234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a quantitative understanding of protein hydration and volumetric properties.
    Mitra L; Rouget JB; Garcia-Moreno B; Royer CA; Winter R
    Chemphyschem; 2008 Dec; 9(18):2715-21. PubMed ID: 18814170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling between hydration layer dynamics and unfolding kinetics of HP-36.
    Bandyopadhyay S; Chakraborty S; Bagchi B
    J Chem Phys; 2006 Aug; 125(8):084912. PubMed ID: 16965062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular basis of the temperature- and pH-induced conformational transitions in elastin-based peptides.
    Li B; Daggett V
    Biopolymers; 2003 Jan; 68(1):121-9. PubMed ID: 12579584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which properties of a spanning network of hydration water enable biological functions?
    Brovchenko I; Oleinikova A
    Chemphyschem; 2008 Dec; 9(18):2695-702. PubMed ID: 19035367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying pressure denaturation of a protein by molecular dynamics simulations.
    Sarupria S; Ghosh T; García AE; Garde S
    Proteins; 2010 May; 78(7):1641-51. PubMed ID: 20146357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration-dependent protein dynamics revealed by molecular dynamics simulation of crystalline staphylococcal nuclease.
    Joti Y; Nakagawa H; Kataoka M; Kitao A
    J Phys Chem B; 2008 Mar; 112(11):3522-8. PubMed ID: 18293961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-bond dynamics in the air-water interface.
    Liu P; Harder E; Berne BJ
    J Phys Chem B; 2005 Feb; 109(7):2949-55. PubMed ID: 16851308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic thermal expansivity and hydrational properties of amyloid peptide Abeta42 in liquid water.
    Brovchenko I; Burri RR; Krukau A; Oleinikova A; Winter R
    J Chem Phys; 2008 Nov; 129(19):195101. PubMed ID: 19026086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease.
    Gruia AD; Fischer S; Smith JC
    Proteins; 2003 Feb; 50(3):507-15. PubMed ID: 12557192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percolation transition of hydration water: from planar hydrophilic surfaces to proteins.
    Oleinikova A; Brovchenko I; Smolin N; Krukau A; Geiger A; Winter R
    Phys Rev Lett; 2005 Dec; 95(24):247802. PubMed ID: 16384427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse temperature transition of a biomimetic elastin model: reactive flux analysis of folding/unfolding and its coupling to solvent dielectric relaxation.
    Baer M; Schreiner E; Kohlmeyer A; Rousseau R; Marx D
    J Phys Chem B; 2006 Mar; 110(8):3576-87. PubMed ID: 16494413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent mechanisms for the dynamics of protein-hydration waters: a molecular dynamics simulation study.
    Vogel M
    J Phys Chem B; 2009 Jul; 113(28):9386-92. PubMed ID: 19548661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal unfolding of proteins.
    Cieplak M; Sułkowska JI
    J Chem Phys; 2005 Nov; 123(19):194908. PubMed ID: 16321114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.