These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 16375514)
1. Orbital-free embedding applied to the calculation of induced dipole moments in CO2...X (X = He, Ne, Ar, Kr, Xe, Hg) van der Waals complexes. Jacob CR; Wesolowski TA; Visscher L J Chem Phys; 2005 Nov; 123(17):174104. PubMed ID: 16375514 [TBL] [Abstract][Full Text] [Related]
2. Calculation of nuclear magnetic resonance shieldings using frozen-density embedding. Jacob CR; Visscher L J Chem Phys; 2006 Nov; 125(19):194104. PubMed ID: 17129086 [TBL] [Abstract][Full Text] [Related]
3. The weak covalent bond in NgAuF (Ng=Ar, Kr, Xe): A challenge for subsystem density functional theory. Beyhan SM; Götz AW; Jacob CR; Visscher L J Chem Phys; 2010 Jan; 132(4):044114. PubMed ID: 20113026 [TBL] [Abstract][Full Text] [Related]
4. Time-dependent density functional theory calculation of van der Waals coefficient of sodium clusters. Banerjee A; Chakrabarti A; Ghanty TK J Chem Phys; 2007 Oct; 127(13):134103. PubMed ID: 17919007 [TBL] [Abstract][Full Text] [Related]
5. The C3-bending vibrational levels of the C3-Kr and C3-Xe van der Waals complexes studied by their Ã-X̃ electronic transitions and by ab initio calculations. Chao JM; Tham KS; Zhang G; Merer AJ; Hsu YC; Hu WP J Chem Phys; 2011 Feb; 134(7):074313. PubMed ID: 21341850 [TBL] [Abstract][Full Text] [Related]
6. An inversion technique for the calculation of embedding potentials. Roncero O; de Lara-Castells MP; Villarreal P; Flores F; Ortega J; Paniagua M; Aguado A J Chem Phys; 2008 Nov; 129(18):184104. PubMed ID: 19045383 [TBL] [Abstract][Full Text] [Related]
8. A combining rule calculation of the ground state van der Waals potentials of the mercury rare-gas complexes. Sheng XW; Li P; Tang KT J Chem Phys; 2009 May; 130(17):174310. PubMed ID: 19425779 [TBL] [Abstract][Full Text] [Related]
9. A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer. Sato T; Tsuneda T; Hirao K J Chem Phys; 2005 Sep; 123(10):104307. PubMed ID: 16178597 [TBL] [Abstract][Full Text] [Related]
10. Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). Krapp A; Frenking G Chemistry; 2007; 13(29):8256-70. PubMed ID: 17639524 [TBL] [Abstract][Full Text] [Related]
11. Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds. Fux S; Jacob CR; Neugebauer J; Visscher L; Reiher M J Chem Phys; 2010 Apr; 132(16):164101. PubMed ID: 20441252 [TBL] [Abstract][Full Text] [Related]
12. A subsystem density-functional theory approach for the quantum chemical treatment of proteins. Jacob CR; Visscher L J Chem Phys; 2008 Apr; 128(15):155102. PubMed ID: 18433283 [TBL] [Abstract][Full Text] [Related]
13. Electronic spectroscopy of the 3d Rydberg states of NO-Rg (Rg=Ne,Ar,Kr,Xe) van der Waals complexes. Bergeron DE; Musgrave A; Gammon RT; Ayles VL; Silber JA; Wright TG; Wen B; Meyer H J Chem Phys; 2006 Jun; 124(21):214302. PubMed ID: 16774402 [TBL] [Abstract][Full Text] [Related]
14. The merits of the frozen-density embedding scheme to model solvatochromic shifts. Neugebauer J; Louwerse MJ; Baerends EJ; Wesolowski TA J Chem Phys; 2005 Mar; 122(9):094115. PubMed ID: 15836120 [TBL] [Abstract][Full Text] [Related]
15. New basis sets for the evaluation of interaction energies: an ab initio study of the He-He, Ne-Ne, Ar-Ar, He-Ne, He-Ar and Ne-Ar van der Waals complex internuclear potentials and ro-vibrational spectra. Baranowska A; Capelo SB; Fernández B Phys Chem Chem Phys; 2010 Nov; 12(41):13586-96. PubMed ID: 20871894 [TBL] [Abstract][Full Text] [Related]
16. Multi-scale modelling of solvatochromic shifts from frozen-density embedding theory with non-uniform continuum model of the solvent: the coumarin 153 case. Zhou X; Kaminski JW; Wesolowski TA Phys Chem Chem Phys; 2011 Jun; 13(22):10565-76. PubMed ID: 21566844 [TBL] [Abstract][Full Text] [Related]
17. A simple natural orbital mechanism of "pure" van der Waals interaction in the lowest excited triplet state of the hydrogen molecule. Gritsenko O; Baerends EJ J Chem Phys; 2006 Feb; 124(5):054115. PubMed ID: 16468859 [TBL] [Abstract][Full Text] [Related]
18. Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory. Kiewisch K; Eickerling G; Reiher M; Neugebauer J J Chem Phys; 2008 Jan; 128(4):044114. PubMed ID: 18247937 [TBL] [Abstract][Full Text] [Related]
19. Microwave and ab initio studies of the Xe-CH4 van der Waals complex. Wen Q; Jäger W J Chem Phys; 2006 Jan; 124(1):14301. PubMed ID: 16409030 [TBL] [Abstract][Full Text] [Related]
20. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations. Vincent MA; Hillier IH; Morgado CA; Burton NA; Shan X J Chem Phys; 2008 Jan; 128(4):044313. PubMed ID: 18247955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]