BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 16375536)

  • 1. Vibrational energy transfer in N2-N2 collisions: a new semiclassical study.
    Cacciatore M; Kurnosov A; Napartovich A
    J Chem Phys; 2005 Nov; 123(17):174315. PubMed ID: 16375536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational energy exchanges in nitrogen: application of new rate constants for kinetic modeling.
    Kurnosov A; Napartovich A; Shnyrev S; Cacciatore M
    J Phys Chem A; 2007 Aug; 111(30):7057-65. PubMed ID: 17628049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiclassical extension of the Landau-Teller theory of collisional energy transfer.
    Dashevskaya EI; Litvin I; Nikitin EE; Troe J
    J Chem Phys; 2006 Oct; 125(15):154315. PubMed ID: 17059263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical determination of rate constants for vibrational relaxation and reaction of OH(X 2Pi, v = 1) with O(3P) atoms.
    Kłos JA; Lique F; Alexander MH; Dagdigian PJ
    J Chem Phys; 2008 Aug; 129(6):064306. PubMed ID: 18715068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-resonant energy transfer from highly vibrationally excited OH to N2.
    Burtt KD; Sharma RD
    J Chem Phys; 2008 Mar; 128(12):124311. PubMed ID: 18376923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new ab initio potential energy surface for studying vibrational relaxation in NO(v) + NO collisions.
    Pajón-Suárez P; Rubayo-Soneira J; Hernández-Lamoneda R
    J Phys Chem A; 2011 Apr; 115(13):2892-9. PubMed ID: 21410176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The He-LiH potential energy surface revisited. II. Rovibrational energy transfer on a three-dimensional surface.
    Taylor BK; Hinde RJ
    J Chem Phys; 2005 Feb; 122(7):074308. PubMed ID: 15743233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrationally inelastic collisions in H+ +CO system: comparing quantum calculations with experiments.
    Kumar TJ; Kumar S
    J Chem Phys; 2004 Jul; 121(1):191-203. PubMed ID: 15260537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultracold collisions and reactions of vibrationally excited OH radicals with oxygen atoms.
    Juanes-Marcos JC; Quéméner G; Kendrick BK; Balakrishnan N
    Phys Chem Chem Phys; 2011 Nov; 13(42):19067-76. PubMed ID: 21674116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quasiclassical trajectory study of the reaction H + O2 <==> OH + O with the O2 reagent vibrationally excited.
    Duchovic RJ; Parker MA
    J Phys Chem A; 2005 Jul; 109(26):5883-96. PubMed ID: 16833923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.
    Kurnosov A; Cacciatore M; Laganà A; Pirani F; Bartolomei M; Garcia E
    J Comput Chem; 2014 Apr; 35(9):722-36. PubMed ID: 24590423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotational and vibrational relaxation of methane excited to 2nu3 in CH4/H2 and CH4/He mixtures at 296 and 193 K from double-resonance measurements.
    Menard-Bourcin F; Boursier C; Doyennette L; Menard J
    J Phys Chem A; 2005 Apr; 109(14):3111-9. PubMed ID: 16833637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the new three-dimensional ab initio interaction energy surface of the Ar-HF complex: rovibrational calculations for Ar-HF and Ar-DF with vibrationally excited diatoms.
    Jankowski P
    J Chem Phys; 2008 Apr; 128(15):154311. PubMed ID: 18433213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-orbit coupling in O2(v)+O2 collisions. II. Quantum scattering calculations on dimer states involving the X 3 Sigma g -, a 1 Delta g, and b 1 Sigma g + states of O2.
    Dayou F; Hernández MI; Campos-Martínez J; Hernández-Lamoneda R
    J Chem Phys; 2007 May; 126(19):194309. PubMed ID: 17523806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of recent potential energy surfaces for the He-N2 interaction. II. Molecular beam scattering and bulk gas relaxation phenomena.
    Stoker JS; Dham AK; McCourt FR; Dickinson AS
    J Chem Phys; 2008 Jun; 128(21):214309. PubMed ID: 18537424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling disequilibrium in gas ensembles: how quantum state populations evolve under multicollision conditions; CO*+Ar, CO, O2, and N2.
    McCaffery AJ; Marsh RJ
    J Chem Phys; 2010 Feb; 132(7):074304. PubMed ID: 20170224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collisions of highly vibrationally excited pyrazine (E vib = 37,900 cm(-1)) with HOD: state-resolved probing of strong and weak collisions.
    Havey DK; Liu Q; Li Z; Elioff M; Mullin AS
    J Phys Chem A; 2007 Dec; 111(51):13321-9. PubMed ID: 18052137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational relaxation of NO-(v=1) in icosahedral (Ar)12NO- clusters.
    Shin HK
    J Chem Phys; 2010 Mar; 132(10):104302. PubMed ID: 20232955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational energy relaxation of azulene studied by the transient grating method. I. Supercritical fluids.
    Kimura Y; Yamamoto Y; Fujiwara H; Terazima M
    J Chem Phys; 2005 Aug; 123(5):054512. PubMed ID: 16108674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum state-resolved energy redistribution in gas ensembles containing highly excited N2.
    McCaffery AJ; Pritchard M; Turner JF; Marsh RJ
    J Chem Phys; 2011 Jan; 134(4):044317. PubMed ID: 21280735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.