These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16375548)

  • 21. Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls.
    D'Hernoncourt J; Kalliadasis S; De Wit A
    J Chem Phys; 2005 Dec; 123(23):234503. PubMed ID: 16392927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convective instability of an acidity front in Hele-Shaw cells.
    Bánsági T; Horváth D; Tóth A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026303. PubMed ID: 14525101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: self-similar scaling and influence of differential diffusion.
    Lima D; D'Onofrio A; De Wit A
    J Chem Phys; 2006 Jan; 124(1):14509. PubMed ID: 16409043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling law of stable single cells in density fingering of chemical fronts.
    Tóth T; Horváth D; Tóth A
    J Chem Phys; 2008 Apr; 128(14):144509. PubMed ID: 18412461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Density fingering of an exothermic autocatalytic reaction.
    Bánsági T; Horváth D; Tóth A; Yang J; Kalliadasis S; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):055301. PubMed ID: 14682835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell.
    Bunton PH; Tullier MP; Meiburg E; Pojman JA
    Chaos; 2017 Oct; 27(10):104614. PubMed ID: 29092415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Marangoni instability in the iodate-arsenous acid reaction front.
    Pópity-Tóth E; Pótári G; Erdős I; Horváth D; Tóth A
    J Chem Phys; 2014 Jul; 141(4):044719. PubMed ID: 25084949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.
    Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell.
    Bockmann M; Muller SC
    Phys Rev Lett; 2000 Sep; 85(12):2506-9. PubMed ID: 10978093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers.
    Rongy L; De Wit A
    J Chem Phys; 2009 Nov; 131(18):184701. PubMed ID: 19916617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A + B → C reaction fronts in Hele-Shaw cells under modulated gravitational acceleration.
    Eckert K; Rongy L; De Wit A
    Phys Chem Chem Phys; 2012 May; 14(20):7337-45. PubMed ID: 22523751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The heads and tails of buoyant autocatalytic balls.
    Rogers MC; Morris SW
    Chaos; 2012 Sep; 22(3):037110. PubMed ID: 23020501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of convection on a propagating front with a liquid product: Comparison of theory and experiments.
    McCaughey B; Pojman JA; Simmons C; Volpert VA
    Chaos; 1998 Jun; 8(2):520-529. PubMed ID: 12779755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pattern formation driven by an acid-base neutralization reaction in aqueous media in a gravitational field.
    Zalts A; El Hasi C; Rubio D; Ureña A; D'Onofrio A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):015304. PubMed ID: 18351907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability of the Shape of a Viscous Drop under Buoyancy-Driven Translation in a Hele-Shaw Cell.
    Gupta NR; Nadim A; Haj-Hariri H; Borhan A
    J Colloid Interface Sci; 2000 Feb; 222(1):107-116. PubMed ID: 10655132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A numerical study of the effect of insoluble surfactants on the stability of a viscous drop translating in a Hele-Shaw cell.
    Gupta NR; Nadim A; Haj-Hariri H; Borhan A
    J Colloid Interface Sci; 2002 Aug; 252(1):236-48. PubMed ID: 16290784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrodynamic instability in the open system of the iodate-arsenous acid reaction.
    Pópity-Tóth É; Pimienta V; Horváth D; Tóth Á
    J Chem Phys; 2013 Oct; 139(16):164707. PubMed ID: 24182064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Buoyancy-driven instability of an autocatalytic reaction front in a Hele-Shaw cell.
    Martin J; Rakotomalala N; Salin D; Böckmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051605. PubMed ID: 12059568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hot spots in density fingering of exothermic autocatalytic chemical fronts.
    Gérard T; Tóth T; Grosfils P; Horváth D; De Wit A; Tóth A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016322. PubMed ID: 23005540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.