These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16375675)

  • 1. Fungal sphingolipids as targets for the development of selective antifungal therapeutics.
    Thevissen K; Francois IE; Aerts AM; Cammue BP
    Curr Drug Targets; 2005 Dec; 6(8):923-8. PubMed ID: 16375675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingolipids as targets for treatment of fungal infections.
    Rollin-Pinheiro R; Singh A; Barreto-Bergter E; Del Poeta M
    Future Med Chem; 2016 Aug; 8(12):1469-84. PubMed ID: 27502288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups.
    Stock SD; Hama H; Radding JA; Young DA; Takemoto JY
    Antimicrob Agents Chemother; 2000 May; 44(5):1174-80. PubMed ID: 10770748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement of sphingolipid alpha-hydroxylation for fungicidal action of syringomycin E.
    Hama H; Young DA; Radding JA; Ma D; Tang J; Stock SD; Takemoto JY
    FEBS Lett; 2000 Jul; 478(1-2):26-8. PubMed ID: 10922463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingolipid signaling in fungal pathogens.
    Rhome R; Del Poeta M
    Adv Exp Med Biol; 2010; 688():232-7. PubMed ID: 20919658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mini-review of recent W.O. patents (2004-2005) of novel anti-fungal compounds in the field of anti-infective drug targets.
    Zhang W; Becker D; Cheng Q
    Recent Pat Antiinfect Drug Discov; 2006 Jun; 1(2):225-30. PubMed ID: 18221147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipids: Regulators of azole drug resistance and fungal pathogenicity.
    Song J; Liu X; Li R
    Mol Microbiol; 2020 Dec; 114(6):891-905. PubMed ID: 32767804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies.
    Mota Fernandes C; Del Poeta M
    Expert Rev Anti Infect Ther; 2020 Nov; 18(11):1083-1092. PubMed ID: 32673125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of antifungal plant defensins with fungal membrane components.
    Thevissen K; Ferket KK; François IE; Cammue BP
    Peptides; 2003 Nov; 24(11):1705-12. PubMed ID: 15019201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.
    Toume M; Tani M
    FEMS Microbiol Lett; 2014 Sep; 358(1):64-71. PubMed ID: 25040056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions.
    Sperling P; Heinz E
    Biochim Biophys Acta; 2003 Jun; 1632(1-3):1-15. PubMed ID: 12782146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic potential of antifungal plant and insect defensins.
    Thevissen K; Kristensen HH; Thomma BP; Cammue BP; François IE
    Drug Discov Today; 2007 Nov; 12(21-22):966-71. PubMed ID: 17993416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal peptides: To be or not to be membrane active.
    Rautenbach M; Troskie AM; Vosloo JA
    Biochimie; 2016 Nov; 130():132-145. PubMed ID: 27234616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast sphingolipid bypass mutants as indicators of antifungal agents selectively targeting sphingolipid synthesis.
    Nagiec MM; Young CL; Zaworski PG; Kobayashi SD
    Biochem Biophys Res Commun; 2003 Jul; 307(2):369-74. PubMed ID: 12859966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of fungal sphingolipid biosynthesis by rustmicin, galbonolide B and their new 21-hydroxy analogs.
    Harris GH; Shafiee A; Cabello MA; Curotto JE; Genilloud O; Göklen KE; Kurtz MB; Rosenbach M; Salmon PM; Thornton RA; Zink DL; Mandala SM
    J Antibiot (Tokyo); 1998 Sep; 51(9):837-44. PubMed ID: 9820234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii).
    Thevissen K; Cammue BP; Lemaire K; Winderickx J; Dickson RC; Lester RL; Ferket KK; Van Even F; Parret AH; Broekaert WF
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9531-6. PubMed ID: 10931938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungals targeted to sphingolipid synthesis: focus on inositol phosphorylceramide synthase.
    Georgopapadakou NH
    Expert Opin Investig Drugs; 2000 Aug; 9(8):1787-96. PubMed ID: 11060777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal cell membrane-promising drug target for antifungal therapy.
    Sant DG; Tupe SG; Ramana CV; Deshpande MV
    J Appl Microbiol; 2016 Dec; 121(6):1498-1510. PubMed ID: 27667746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids.
    Mor V; Rella A; Farnoud AM; Singh A; Munshi M; Bryan A; Naseem S; Konopka JB; Ojima I; Bullesbach E; Ashbaugh A; Linke MJ; Cushion M; Collins M; Ananthula HK; Sallans L; Desai PB; Wiederhold NP; Fothergill AW; Kirkpatrick WR; Patterson T; Wong LH; Sinha S; Giaever G; Nislow C; Flaherty P; Pan X; Cesar GV; de Melo Tavares P; Frases S; Miranda K; Rodrigues ML; Luberto C; Nimrichter L; Del Poeta M
    mBio; 2015 Jun; 6(3):e00647. PubMed ID: 26106079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingolipid-enriched domains in fungi.
    Santos FC; Marquês JT; Bento-Oliveira A; de Almeida RFM
    FEBS Lett; 2020 Nov; 594(22):3698-3718. PubMed ID: 33141925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.