BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16375850)

  • 1. Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells.
    Desquiret V; Loiseau D; Jacques C; Douay O; Malthièry Y; Ritz P; Roussel D
    Biochim Biophys Acta; 2006 Jan; 1757(1):21-30. PubMed ID: 16375850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations.
    Schlagowski AI; Singh F; Charles AL; Gali Ramamoorthy T; Favret F; Piquard F; Geny B; Zoll J
    J Appl Physiol (1985); 2014 Feb; 116(4):364-75. PubMed ID: 24336883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health.
    Ost M; Keipert S; Klaus S
    Biochimie; 2017 Mar; 134():77-85. PubMed ID: 27916644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy.
    Loiseau D; Morvan D; Chevrollier A; Demidem A; Douay O; Reynier P; Stepien G
    Mol Carcinog; 2009 Aug; 48(8):733-41. PubMed ID: 19347860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity.
    Caldeira da Silva CC; Cerqueira FM; Barbosa LF; Medeiros MH; Kowaltowski AJ
    Aging Cell; 2008 Aug; 7(4):552-60. PubMed ID: 18505478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large enhancement of skeletal muscle cell glucose uptake and suppression of hepatocyte glucose-6-phosphatase activity by weak uncouplers of oxidative phosphorylation.
    Martineau LC
    Biochim Biophys Acta; 2012 Feb; 1820(2):133-50. PubMed ID: 22155143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mitochondrial uncoupler DNP triggers brain cell mTOR signaling network reprogramming and CREB pathway up-regulation.
    Liu D; Zhang Y; Gharavi R; Park HR; Lee J; Siddiqui S; Telljohann R; Nassar MR; Cutler RG; Becker KG; Mattson MP
    J Neurochem; 2015 Aug; 134(4):677-92. PubMed ID: 26010875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupling oxidative phosphorylation with 2,4-dinitrophenol promotes development of the adhesion phenotype.
    Shavell VI; Fletcher NM; Jiang ZL; Saed GM; Diamond MP
    Fertil Steril; 2012 Mar; 97(3):729-33. PubMed ID: 22200174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible mitochondrial uncoupling in the cold phase during liver preservation/reperfusion reduces oxidative injury in the rat model.
    Petrenko AY; Cherkashina DV; Somov AY; Tkacheva EN; Semenchenko OA; Lebedinsky AS; Fuller BJ
    Cryobiology; 2010 Jun; 60(3):293-300. PubMed ID: 20152823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The uncoupling agent 2,4-dinitrophenol improves mitochondrial homeostasis following striatal quinolinic acid injections.
    Korde AS; Sullivan PG; Maragos WF
    J Neurotrauma; 2005 Oct; 22(10):1142-9. PubMed ID: 16238490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of substrates in the regulation of mitochondrial function in situ.
    Leverve XM; Fontaine E
    IUBMB Life; 2001; 52(3-5):221-9. PubMed ID: 11798036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ANT2 expression under hypoxic conditions produces opposite cell-cycle behavior in 143B and HepG2 cancer cells.
    Chevrollier A; Loiseau D; Gautier F; Malthièry Y; Stepien G
    Mol Carcinog; 2005 Jan; 42(1):1-8. PubMed ID: 15486956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation.
    Rosca MG; Mustata TG; Kinter MT; Ozdemir AM; Kern TS; Szweda LI; Brownlee M; Monnier VM; Weiss MF
    Am J Physiol Renal Physiol; 2005 Aug; 289(2):F420-30. PubMed ID: 15814529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria of brown fat: oxidative phosphorylation sensitive to 2,4,-dinitrophenol.
    Joel CD; Neaves WB; Rabb JM
    Biochem Biophys Res Commun; 1967 Nov; 29(4):490-5. PubMed ID: 16496524
    [No Abstract]   [Full Text] [Related]  

  • 17. [The effect of 2,4-dinitrophenol and glucose on the utilization of succinate, lactate, pyruvate and formate by Escherichia coli K12].
    Dyl'ovyĭ MV
    Ukr Biokhim Zh (1978); 1996; 68(2):37-41. PubMed ID: 9005659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of glycolytic and mitochondrial pathways in glucose-induced changes in islet respiration and insulin secretion.
    Ortsäter H; Liss P; Akerman KE; Bergsten P
    Pflugers Arch; 2002 Jul; 444(4):506-12. PubMed ID: 12136270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture.
    Rieger D; McGowan LT; Cox SF; Pugh PA; Thompson JG
    Reprod Fertil Dev; 2002; 14(5-6):339-43. PubMed ID: 12467359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear and mitochondrial genome responses in HeLa cells treated with inhibitors of mitochondrial DNA expression.
    Piechota J; Szczesny R; Wolanin K; Chlebowski A; Bartnik E
    Acta Biochim Pol; 2006; 53(3):485-95. PubMed ID: 16951738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.