These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16375996)

  • 21. Estimation of 14CO2 flux at soil-atmosphere interface and distribution of 14C in forest ecosystem.
    Koarashi J; Amano H; Andoh M; Iida T; Moriizumi J
    J Environ Radioact; 2002; 60(3):249-61. PubMed ID: 12054039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 2. Uptake by fish.
    Smith JT
    Sci Total Environ; 2006 Sep; 368(2-3):502-18. PubMed ID: 16647745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental radioactivity in New Zealand and results of extended monitoring of fallout from French nuclear tests in the Pacific. HASL-184.
    HASL Rep; 1967 Jul; ():3:22-53. PubMed ID: 5187179
    [No Abstract]   [Full Text] [Related]  

  • 24. Applying DOE's Graded Approach for assessing radiation impacts to non-human biota at the INL.
    Morris RC
    J Environ Radioact; 2006; 87(1):77-100. PubMed ID: 16459178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mass balance approach to estimating radionuclide loads and concentrations in edible fish tissues using stable analogues.
    Yankovich TL
    J Environ Radioact; 2009 Sep; 100(9):795-801. PubMed ID: 19552986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 14CO2 dispersion around two PWR nuclear power plants in Brazil.
    Dias CM; Stenström K; Bacelar Leão IL; Santos RV; Nícoli IG; Skog G; Ekström P; da Silveira Corrêa R
    J Environ Radioact; 2009 Jul; 100(7):574-80. PubMed ID: 19427084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relative importance of atmospheric and root uptake pathways for 14CO2 transfer from contaminated soil to plants.
    Amiro BD; Zhuang Y; Sheppard SC
    Health Phys; 1991 Dec; 61(6):825-9. PubMed ID: 1955327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling the fate of sulphur-35 in crops. 2. Development and validation of the CROPS-35 model.
    Collins C; Cunningham N
    Environ Pollut; 2005 Feb; 133(3):439-45. PubMed ID: 15519719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ambient environmental profile for the Savannah River Site.
    Rollins EM
    Health Phys; 2008 Jul; 95(1):55-68. PubMed ID: 18545030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland.
    Brennwald MS; van Dorp F
    J Environ Radioact; 2009 Dec; 100(12):1058-61. PubMed ID: 19560845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review and model assessment of (32)P and (33)P uptake to biota in freshwater systems.
    Smith JT; Bowes MJ; Cailes CR
    J Environ Radioact; 2011 Apr; 102(4):317-25. PubMed ID: 21324571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. POSEIDON/RODOS models for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, Black and North Seas.
    Lepicard S; Heling R; Maderich V
    J Environ Radioact; 2004; 72(1-2):153-61. PubMed ID: 15162867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of warm water inflows on the dispersion of pollutants in small reservoirs.
    Palancar MC; Aragón JM; Sánchez F; Gil R
    J Environ Manage; 2006 Nov; 81(3):210-22. PubMed ID: 16574305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling the transfer of 14C from the atmosphere to grass: a case study in a grass field near AREVA-NC La Hague.
    Aulagnier C; Le Dizès S; Maro D; Hébert D; Lardy R; Martin R; Gonze MA
    J Environ Radioact; 2012 Oct; 112():52-9. PubMed ID: 22537618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dynamic transfer model for the estimation of 14C radioactivity in Japanese radish (Daikon) plants.
    Takashi T; Arai R; Nozoe S; Tako Y; Nakamura Y
    Health Phys; 2013 Aug; 105(2):121-7. PubMed ID: 23799496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probabilistic risk assessment for linear alkylbenzene sulfonate (LAS) in sewage sludge used on agricultural soil.
    Schowanek D; David H; Francaviglia R; Hall J; Kirchmann H; Krogh PH; Schraepen N; Smith S; Wildemann T
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):245-59. PubMed ID: 17967498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Monitoring the tritium content in waste waters and objects in the surroundings of Soviet nuclear power plants].
    Markelova VF; Maziukevich NP
    Gig Sanit; 1990 Feb; (2):42-5. PubMed ID: 2361613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Consideration of stable iodine in the environment in the evaluation of maximum permissible concentrations for iodine-129.
    Tadmor J
    Radiol Health Data Rep; 1971 Dec; 12(12):611-4. PubMed ID: 5172415
    [No Abstract]   [Full Text] [Related]  

  • 39. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model.
    Vermeulen A; Gysemans KP; Bernaerts K; Geeraerd AH; Van Impe JF; Debevere J; Devlieghere F
    Int J Food Microbiol; 2007 Mar; 114(3):332-41. PubMed ID: 17184866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.