These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 16376088)
1. High resolution EELS of Cu-V oxides: application to batteries materials. Laffont L; Wu MY; Chevallier F; Poizot P; Morcrette M; Tarascon JM Micron; 2006; 37(5):459-64. PubMed ID: 16376088 [TBL] [Abstract][Full Text] [Related]
2. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878 [TBL] [Abstract][Full Text] [Related]
3. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
4. Fe valence determination and Li elemental distribution in lithiated FeO₀.₇F₁.₃/C nanocomposite battery materials by electron energy loss spectroscopy (EELS). Cosandey F; Su D; Sina M; Pereira N; Amatucci GG Micron; 2012 Jan; 43(1):22-9. PubMed ID: 21696971 [TBL] [Abstract][Full Text] [Related]
5. Li-alloy based anode materials for Li secondary batteries. Park CM; Kim JH; Kim H; Sohn HJ Chem Soc Rev; 2010 Aug; 39(8):3115-41. PubMed ID: 20593097 [TBL] [Abstract][Full Text] [Related]
6. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy. Terauchi M Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665 [TBL] [Abstract][Full Text] [Related]
7. EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries. Cosandey F; Al-Sharab JF; Badway F; Amatucci GG; Stadelmann P Microsc Microanal; 2007 Apr; 13(2):87-95. PubMed ID: 17367548 [TBL] [Abstract][Full Text] [Related]
8. Atomic resolution STEM analysis of defects and interfaces in ceramic materials. Klie RF; Zhu Y Micron; 2005; 36(3):219-31. PubMed ID: 15725591 [TBL] [Abstract][Full Text] [Related]
9. Layered oxysulfides Sr2MnO2Cu2m-0.5Sm+1 (m = 1, 2, and 3) as insertion hosts for Li ion batteries. Indris S; Cabana J; Rutt OJ; Clarke SJ; Grey CP J Am Chem Soc; 2006 Oct; 128(41):13354-5. PubMed ID: 17031937 [TBL] [Abstract][Full Text] [Related]
10. High-resolution Z-contrast imaging and EELS study of functional oxide materials. Klie RF; Zhao Y; Yang G; Zhu Y Micron; 2008 Aug; 39(6):723-33. PubMed ID: 18082411 [TBL] [Abstract][Full Text] [Related]
11. Measuring the absolute position of EELS ionisation edges in a TEM. Potapov PL; Schryvers D Ultramicroscopy; 2004 Feb; 99(1):73-85. PubMed ID: 15013515 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-Coated Ni(OH)2 tubes. Li W; Zhang S; Chen J J Phys Chem B; 2005 Jul; 109(29):14025-32. PubMed ID: 16852761 [TBL] [Abstract][Full Text] [Related]
13. Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries. Gireaud L; Grugeon S; Pilard S; Guenot P; Tarascon JM; Laruelle S Anal Chem; 2006 Jun; 78(11):3688-98. PubMed ID: 16737225 [TBL] [Abstract][Full Text] [Related]
14. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Kimoto K; Asaka T; Nagai T; Saito M; Matsui Y; Ishizuka K Nature; 2007 Nov; 450(7170):702-4. PubMed ID: 17965728 [TBL] [Abstract][Full Text] [Related]
15. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries. Ng SH; Tran N; Bramnik KG; Hibst H; Novák P Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463 [TBL] [Abstract][Full Text] [Related]
16. Targeted oxidase reactivity with a new redox-active ligand incorporating N2O2 donor atoms. Complexes of Cu(II), Ni(II), Pd(II), Fe(III), and V(V). Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P Inorg Chem; 2008 Dec; 47(24):11620-32. PubMed ID: 18998669 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope. Lazar S; Botton GA; Zandbergen HW Ultramicroscopy; 2006; 106(11-12):1091-103. PubMed ID: 16872750 [TBL] [Abstract][Full Text] [Related]
18. High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): dependence of water reactivity as a function of Na coverage. Politano A; Agostino RG; Colavita E; Formoso V; Chiarello G J Chem Phys; 2007 Jun; 126(24):244712. PubMed ID: 17614582 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. Gu Y; Chen D; Jiao X J Phys Chem B; 2005 Sep; 109(38):17901-6. PubMed ID: 16853296 [TBL] [Abstract][Full Text] [Related]
20. Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors. Di CA; Yu G; Liu Y; Guo Y; Wu W; Wei D; Zhu D Phys Chem Chem Phys; 2008 May; 10(17):2302-7. PubMed ID: 18414721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]