BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16376338)

  • 21. Identification of 14-3-3zeta as a protein kinase B/Akt substrate.
    Powell DW; Rane MJ; Chen Q; Singh S; McLeish KR
    J Biol Chem; 2002 Jun; 277(24):21639-42. PubMed ID: 11956222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zeta 14-3-3 protein favours the formation of human tau fibrillar polymers.
    Hernández F; Cuadros R; Avila J
    Neurosci Lett; 2004 Mar; 357(2):143-6. PubMed ID: 15036595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the enzyme phosphorylation state and the substrate on PKA enzyme dynamics.
    Montenegro M; Masgrau L; González-Lafont A; Lluch JM; Garcia-Viloca M
    Biophys Chem; 2012 Feb; 161():17-28. PubMed ID: 22154087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The typically disordered N-terminus of PKA can fold as a helix and project the myristoylation site into solution.
    Breitenlechner C; Engh RA; Huber R; Kinzel V; Bossemeyer D; Gassel M
    Biochemistry; 2004 Jun; 43(24):7743-9. PubMed ID: 15196017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of the monomeric form of human 14-3-3ζ protein and its interaction with tau and HspB6.
    Sluchanko NN; Sudnitsyna MV; Seit-Nebi AS; Antson AA; Gusev NB
    Biochemistry; 2011 Nov; 50(45):9797-808. PubMed ID: 21978388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signaling to p53: the use of phospho-specific antibodies to probe for in vivo kinase activation.
    Craig AL; Bray SE; Finlan LE; Kernohan NM; Hupp TR
    Methods Mol Biol; 2003; 234():171-202. PubMed ID: 12824532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 14-3-3 interaction with phosphodiesterase 8A sustains PKA signaling and downregulates the MAPK pathway.
    Mukherjee S; Roy S; Mukherjee S; Harikishore A; Bhunia A; Mandal AK
    J Biol Chem; 2024 Mar; 300(3):105725. PubMed ID: 38325743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface.
    Woodcock JM; Murphy J; Stomski FC; Berndt MC; Lopez AF
    J Biol Chem; 2003 Sep; 278(38):36323-7. PubMed ID: 12865427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CaMKK2 is inactivated by cAMP-PKA signaling and 14-3-3 adaptor proteins.
    Langendorf CG; O'Brien MT; Ngoei KRW; McAloon LM; Dhagat U; Hoque A; Ling NXY; Dite TA; Galic S; Loh K; Parker MW; Oakhill JS; Kemp BE; Scott JW
    J Biol Chem; 2020 Nov; 295(48):16239-16250. PubMed ID: 32913128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation.
    Lalle M; Bavassano C; Fratini F; Cecchetti S; Boisguerin P; Crescenzi M; Pozio E
    Int J Parasitol; 2010 Feb; 40(2):201-13. PubMed ID: 19733174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1.
    BoseDasgupta S; Moes S; Jenoe P; Pieters J
    FEBS J; 2015 Apr; 282(7):1167-81. PubMed ID: 25645340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction.
    Tugaeva KV; Tsvetkov PO; Sluchanko NN
    PLoS One; 2017; 12(6):e0178933. PubMed ID: 28575131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 14-3-3ζ interacts with stat3 and regulates its constitutive activation in multiple myeloma cells.
    Zhang J; Chen F; Li W; Xiong Q; Yang M; Zheng P; Li C; Pei J; Ge F
    PLoS One; 2012; 7(1):e29554. PubMed ID: 22279540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitation of Human 14-3-3ζ Dimerization and the Effect of Phosphorylation on Dimer-monomer Equilibria.
    Trošanová Z; Louša P; Kozeleková A; Brom T; Gašparik N; Tungli J; Weisová V; Župa E; Žoldák G; Hritz J
    J Mol Biol; 2022 Apr; 434(7):167479. PubMed ID: 35134439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of 14-3-3sigma dimerization determinants: requirement of homodimerization for inhibition of cell proliferation.
    Verdoodt B; Benzinger A; Popowicz GM; Holak TA; Hermeking H
    Cell Cycle; 2006 Dec; 5(24):2920-6. PubMed ID: 17172876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of salt bridges in the dimer interface of 14-3-3ζ in dimer dynamics, N-terminal α-helical order, and molecular chaperone activity.
    Woodcock JM; Goodwin KL; Sandow JJ; Coolen C; Perugini MA; Webb AI; Pitson SM; Lopez AF; Carver JA
    J Biol Chem; 2018 Jan; 293(1):89-99. PubMed ID: 29109150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dimerization is essential for 14-3-3zeta stability and function in vivo.
    Messaritou G; Grammenoudi S; Skoulakis EM
    J Biol Chem; 2010 Jan; 285(3):1692-700. PubMed ID: 19920133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting regulation of ATP synthase 5 alpha/beta dimerization alleviates senescence.
    Lee YH; Choi D; Jang G; Park JY; Song ES; Lee H; Kuk MU; Joo J; Ahn SK; Byun Y; Park JT
    Aging (Albany NY); 2022 Jan; 14(2):678-707. PubMed ID: 35093936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterizing PKA-Mediated Phosphorylation of Plexin Using Purified Proteins.
    Yang T; Terman JR
    Methods Mol Biol; 2017; 1493():147-159. PubMed ID: 27787848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of Tunable Protein Interfaces Controlled by Post-Translational Modifications.
    Winter DL; Iranmanesh H; Clark DS; Glover DJ
    ACS Synth Biol; 2020 Aug; 9(8):2132-2143. PubMed ID: 32702241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.