These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16376400)

  • 1. Acoustic streaming in lithotripsy fields: preliminary observation using a particle image velocimetry method.
    Choi MJ; Doh DH; Hwang TG; Cho CH; Paeng DG; Rim GH; Coleman AJ
    Ultrasonics; 2006 Feb; 44(2):133-45. PubMed ID: 16376400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap.
    Kuznetsova LA; Bazou D; Coakley WT
    Langmuir; 2007 Mar; 23(6):3009-16. PubMed ID: 17286416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of acoustic streaming in a closed-loop traveling wave resonator using laser Doppler velocimetry.
    Desjouy C; Penelet G; Lotton P; Blondeau J
    J Acoust Soc Am; 2009 Nov; 126(5):2176-83. PubMed ID: 19894797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of high intensity focused ultrasound transducers using acoustic streaming.
    Hariharan P; Myers MR; Robinson RA; Maruvada SH; Sliwa J; Banerjee RK
    J Acoust Soc Am; 2008 Mar; 123(3):1706-19. PubMed ID: 18345858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of acoustic streaming and heating using synchronized infrared thermography and particle image velocimetry.
    Layman CN; Sou IM; Bartak R; Ray C; Allen JS
    Ultrason Sonochem; 2011 Sep; 18(5):1258-61. PubMed ID: 21514205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane.
    Barnkob R; Augustsson P; Laurell T; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056307. PubMed ID: 23214876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by Particle Image Velocimetry.
    Day SW; Higham TE; Cheer AY; Wainwright PC
    J Exp Biol; 2005 Jul; 208(Pt 14):2661-71. PubMed ID: 16000536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.
    Madelin G; Grucker D; Franconi JM; Thiaudiere E
    Ultrasonics; 2006 Jul; 44(3):272-8. PubMed ID: 16650447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.
    Reyt I; Bailliet H; Valière JC
    J Acoust Soc Am; 2014 Jan; 135(1):27-37. PubMed ID: 24437742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct methods for characterizing high-intensity focused ultrasound transducers using acoustic streaming.
    Myers MR; Hariharan P; Banerjee RK
    J Acoust Soc Am; 2008 Sep; 124(3):1790-802. PubMed ID: 19045669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of acoustical streaming: theoretical model, Doppler measurements and optical visualisation.
    Nowicki A; Kowalewski T; Secomski W; Wójcik J
    Eur J Ultrasound; 1998 Feb; 7(1):73-81. PubMed ID: 9614292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study of underwater transmission characteristics of high-frequency 30 MHz polyurea ultrasonic transducer.
    Nakazawa M; Aoyagi T; Tabaru M; Nakamura K; Ueha S
    Ultrasonics; 2014 Feb; 54(2):526-36. PubMed ID: 24035608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of extended use of an electromagnetic lithotripter beyond the manufacturer's recommended maintenance schedule.
    Chen TY; Ponsot Y; Brouillette M; Tétrault JP; Tu le M
    Can J Urol; 2007 Jun; 14(3):3560-5. PubMed ID: 17594746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.
    Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC
    Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of water temperature on pressure pulses generated by an electromagnetic type lithotripter.
    Augat P; Claes L
    Ultrasound Med Biol; 1995; 21(1):89-96. PubMed ID: 7754582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results.
    Liu L; Zheng H; Williams L; Zhang F; Wang R; Hertzberg J; Shandas R
    Phys Med Biol; 2008 Mar; 53(5):1397-412. PubMed ID: 18296769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.