These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 16376550)

  • 1. First-principles calculation of the electronic structure and energy loss near edge spectra of chiral carbon nanotubes.
    Bertoni G; Calmels L
    Micron; 2006; 37(5):486-91. PubMed ID: 16376550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-loss near-edge structure (ELNES) and first-principles calculation of electronic structure of nickel silicide systems.
    Kawasaki N; Sugiyama N; Otsuka Y; Hashimoto H; Tsujimoto M; Kurata H; Isoda S
    Ultramicroscopy; 2008 Apr; 108(5):399-406. PubMed ID: 17697750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles investigations on the functionalization of chiral and non-chiral carbon nanotubes by Diels-Alder cycloaddition reactions.
    Mercuri F; Sgamellotti A
    Phys Chem Chem Phys; 2009 Jan; 11(3):563-7. PubMed ID: 19283274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: beyond the local density approximation.
    Barone V; Scuseria GE
    J Chem Phys; 2004 Dec; 121(21):10376-9. PubMed ID: 15549916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality and diameter dependent x-ray absorption of single walled carbon nanotubes.
    Gao B; Wu Z; Agren H; Luo Y
    J Chem Phys; 2009 Jul; 131(3):034704. PubMed ID: 19624218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of hole states near the Fermi level in Nb(1-)(x)Mg(x)B(2) by electron energy-loss spectroscopy and first-principles calculations.
    Ma C; Xiao RJ; Geng HX; Yang HX; Tian HF; Che GC; Li JQ
    Ultramicroscopy; 2008 Mar; 108(4):320-6. PubMed ID: 17560031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study.
    Alfieri G; Kimoto T
    Nanotechnology; 2009 Jul; 20(28):285703. PubMed ID: 19550011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles calculations of X-ray absorption spectra at the K-edge of 3d transition metals: an electronic structure analysis of the pre-edge.
    Cabaret D; Bordage A; Juhin A; Arfaoui M; Gaudry E
    Phys Chem Chem Phys; 2010 Jun; 12(21):5619-33. PubMed ID: 20431827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
    Qian Z; Hou S; Ning J; Li R; Shen Z; Zhao X; Xue Z
    J Chem Phys; 2007 Feb; 126(8):084705. PubMed ID: 17343467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics and electronic structure of armchair nanotubes with topological line defects.
    Okada S; Nakada K; Kawai T
    J Phys Condens Matter; 2007 Sep; 19(36):365231. PubMed ID: 21694176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-hole effects on the ELNES of absorption edges in SrTiO3.
    van Benthem K; Elsässer C; Rühle M
    Ultramicroscopy; 2003 Sep; 96(3-4):509-22. PubMed ID: 12871812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality effects in atomic vacancy-limited transport in metallic carbon nanotubes.
    Zeng H; Hu H; Leburton JP
    ACS Nano; 2010 Jan; 4(1):292-6. PubMed ID: 20000404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between zigzag single-wall carbon nanotubes and polymers: a density-functional study.
    Simeoni M; De Luca C; Picozzi S; Santucci S; Delley B
    J Chem Phys; 2005 Jun; 122(21):214710. PubMed ID: 15974765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study.
    Barone V; Heyd J; Scuseria GE
    J Chem Phys; 2004 Apr; 120(15):7169-73. PubMed ID: 15267624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.