These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16376595)

  • 61. Maximum common binding modes (MCBM): consensus docking scoring using multiple ligand information and interaction fingerprints.
    Renner S; Derksen S; Radestock S; Mörchen F
    J Chem Inf Model; 2008 Feb; 48(2):319-32. PubMed ID: 18211051
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluation of binary QSAR models derived from LUDI and MOE scoring functions for structure based virtual screening.
    Prathipati P; Saxena AK
    J Chem Inf Model; 2006; 46(1):39-51. PubMed ID: 16426038
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimizing the signal-to-noise ratio of scoring functions for protein--ligand docking.
    Seifert MH
    J Chem Inf Model; 2008 Mar; 48(3):602-12. PubMed ID: 18293951
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening.
    Huang N; Kalyanaraman C; Irwin JJ; Jacobson MP
    J Chem Inf Model; 2006; 46(1):243-53. PubMed ID: 16426060
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Using buriedness to improve discrimination between actives and inactives in docking.
    O'Boyle NM; Brewerton SC; Taylor R
    J Chem Inf Model; 2008 Jun; 48(6):1269-78. PubMed ID: 18533645
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An anchor-dependent molecular docking process for docking small flexible molecules into rigid protein receptors.
    Lin TH; Lin GL
    J Chem Inf Model; 2008 Aug; 48(8):1638-55. PubMed ID: 18642894
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bootstrap-based consensus scoring method for protein-ligand docking.
    Fukunishi H; Teramoto R; Takada T; Shimada J
    J Chem Inf Model; 2008 May; 48(5):988-96. PubMed ID: 18426197
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fully automated molecular mechanics based induced fit protein-ligand docking method.
    Koska J; Spassov VZ; Maynard AJ; Yan L; Austin N; Flook PK; Venkatachalam CM
    J Chem Inf Model; 2008 Oct; 48(10):1965-73. PubMed ID: 18816046
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular mechanics methods for predicting protein-ligand binding.
    Huang N; Kalyanaraman C; Bernacki K; Jacobson MP
    Phys Chem Chem Phys; 2006 Nov; 8(44):5166-77. PubMed ID: 17203140
    [TBL] [Abstract][Full Text] [Related]  

  • 70. ASEDock-docking based on alpha spheres and excluded volumes.
    Goto J; Kataoka R; Muta H; Hirayama N
    J Chem Inf Model; 2008 Mar; 48(3):583-90. PubMed ID: 18278891
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Steering protein-ligand docking with quantitative NMR chemical shift perturbations.
    González-Ruiz D; Gohlke H
    J Chem Inf Model; 2009 Oct; 49(10):2260-71. PubMed ID: 19795907
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Consideration of molecular weight during compound selection in virtual target-based database screening.
    Pan Y; Huang N; Cho S; MacKerell AD
    J Chem Inf Comput Sci; 2003; 43(1):267-72. PubMed ID: 12546562
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analysis and optimization of structure-based virtual screening protocols. 2. Examination of docked ligand orientation sampling methodology: mapping a pharmacophore for success.
    Good AC; Cheney DL; Sitkoff DF; Tokarski JS; Stouch TR; Bassolino DA; Krystek SR; Li Y; Mason JS; Perkins TD
    J Mol Graph Model; 2003 Sep; 22(1):31-40. PubMed ID: 12798389
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Virtual high-throughput screening of molecular databases.
    Seifert MH; Kraus J; Kramer B
    Curr Opin Drug Discov Devel; 2007 May; 10(3):298-307. PubMed ID: 17554856
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Beyond the virtual screening paradigm: structure-based searching for new lead compounds.
    Schlosser J; Rarey M
    J Chem Inf Model; 2009 Apr; 49(4):800-9. PubMed ID: 19354328
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pharmacophore modeling and in silico screening for new KDR kinase inhibitors.
    Yu H; Wang Z; Zhang L; Zhang J; Huang Q
    Bioorg Med Chem Lett; 2007 Apr; 17(8):2126-33. PubMed ID: 17306530
    [TBL] [Abstract][Full Text] [Related]  

  • 77. QUASI: a novel method for simultaneous superposition of multiple flexible ligands and virtual screening using partial similarity.
    Todorov NP; Alberts IL; de Esch IJ; Dean PM
    J Chem Inf Model; 2007; 47(3):1007-20. PubMed ID: 17497844
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the EGEE grid.
    Kasam V; Zimmermann M; Maass A; Schwichtenberg H; Wolf A; Jacq N; Breton V; Hofmann-Apitius M
    J Chem Inf Model; 2007; 47(5):1818-28. PubMed ID: 17727268
    [TBL] [Abstract][Full Text] [Related]  

  • 79. GPCR structure-based virtual screening approach for CB2 antagonist search.
    Chen JZ; Wang J; Xie XQ
    J Chem Inf Model; 2007; 47(4):1626-37. PubMed ID: 17580929
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prediction of multiple binding modes of the CDK2 inhibitors, anilinopyrazoles, using the automated docking programs GOLD, FlexX, and LigandFit: an evaluation of performance.
    Sato H; Shewchuk LM; Tang J
    J Chem Inf Model; 2006; 46(6):2552-62. PubMed ID: 17125195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.