These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16376600)

  • 1. Effects of atrial contraction, atrioventricular interaction and heart valve dynamics on human cardiovascular system response.
    Korakianitis T; Shi Y
    Med Eng Phys; 2006 Oct; 28(8):762-79. PubMed ID: 16376600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction.
    Korakianitis T; Shi Y
    Med Eng Phys; 2006 Sep; 28(7):613-28. PubMed ID: 16293439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal haemodynamic system model including ventricular interaction and valve dynamics.
    Smith BW; Chase JG; Nokes RI; Shaw GM; Wake G
    Med Eng Phys; 2004 Mar; 26(2):131-9. PubMed ID: 15036180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves.
    Korakianitis T; Shi Y
    J Biomech; 2006; 39(11):1964-82. PubMed ID: 16140309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimentally derived stress resultant shell model for heart valve dynamic simulations.
    Kim H; Chandran KB; Sacks MS; Lu J
    Ann Biomed Eng; 2007 Jan; 35(1):30-44. PubMed ID: 17089074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-scale computational method applied to the quantitative evaluation of the left ventricular function.
    Liang F; Taniguchi H; Liu H
    Comput Biol Med; 2007 May; 37(5):700-15. PubMed ID: 16914132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Myocardial contractile indices as a means for studying the inotropic reactions of the different heart chambers in a computerized experiment].
    Alipov NN; Izrail'tian IM; Kuznetsova TE; Lepetiukh OL
    Fiziol Zh SSSR Im I M Sechenova; 1991 Jan; 77(1):82-8. PubMed ID: 1652500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube.
    Taber LA; Zhang J; Perucchio R
    J Biomech Eng; 2007 Jun; 129(3):441-9. PubMed ID: 17536912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relations between the timing of the second heart sound and aortic blood pressure.
    Zhang XY; MacPherson E; Zhang YT
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1291-7. PubMed ID: 18390320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of cardiac and cardio-therapeutical phenomena using a pulsatile circulatory model.
    Welp C; Werner J; Böhringer D; Hexamer M
    Biomed Tech (Berl); 2004 Nov; 49(11):327-31. PubMed ID: 15624871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulation of the cardiovascular system: a review of applications, methods, and potentials.
    Brunberg A; Heinke S; Spillner J; Autschbach R; Abel D; Leonhardt S
    Biomed Tech (Berl); 2009 Oct; 54(5):233-44. PubMed ID: 19807287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.
    Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D
    J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cross-bridge dynamics during ventricular contraction predicted by coupling the cardiac cell model with a circulation model.
    Shim EB; Amano A; Takahata T; Shimayoshi T; Noma A
    J Physiol Sci; 2007 Oct; 57(5):275-85. PubMed ID: 17916279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of blood flow in artificial and natural hearts with fluid-structure interaction.
    Doyle MG; Vergniaud JB; Tavoularis S; Bourgault Y
    Artif Organs; 2008 Nov; 32(11):870-9. PubMed ID: 18959680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new multi-scale simulation model of the circulation: from cells to system.
    Shim EB; Leem CH; Abe Y; Noma A
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1483-500. PubMed ID: 16766356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of dsigma*/dt (max), a load independent index of contractility, in the canine.
    Black A; Grenz N; Niccole S; Arndt P; Lucht J; Nesvig K; Ewert D; Mulligan L
    Cardiovasc Eng; 2009 Jun; 9(2):49-55. PubMed ID: 19466542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and prediction of cardiotherapeutical phenomena from a pulsatile model coupled to the Guyton circulatory model.
    Werner J; Böhringer D; Hexamer M
    IEEE Trans Biomed Eng; 2002 May; 49(5):430-9. PubMed ID: 12002174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of hemodynamic changes towards PEEP titrations at different volemic levels using a minimal cardiovascular model.
    Starfinger C; Chase JG; Hann CE; Shaw GM; Lambert P; Smith BW; Sloth E; Larsson A; Andreassen S; Rees S
    Comput Methods Programs Biomed; 2008 Aug; 91(2):128-34. PubMed ID: 18472180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulations of activation in an anatomically based model of the human ventricular conduction system.
    Pollard AE; Barr RC
    IEEE Trans Biomed Eng; 1991 Oct; 38(10):982-96. PubMed ID: 1761299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of global hydro-dynamics in a pulsatile bioreactor for cardiovascular tissue engineering.
    Shi Y
    J Biomech; 2008; 41(5):953-9. PubMed ID: 18261734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.