These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 1637728)

  • 1. ATP-sensitive potassium channels and myocardial ischemia: why do they open?
    Coetzee WA
    Cardiovasc Drugs Ther; 1992 Jun; 6(3):201-8. PubMed ID: 1637728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action potential duration and activation of ATP-sensitive potassium current in isolated guinea-pig ventricular myocytes.
    Faivre JF; Findlay I
    Biochim Biophys Acta; 1990 Nov; 1029(1):167-72. PubMed ID: 2223807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of ATP sensitive potassium channel in extracellular potassium accumulation and cardiac arrhythmias during myocardial ischaemia.
    Billman GE
    Cardiovasc Res; 1994 Jun; 28(6):762-9. PubMed ID: 7923277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K(ATP) channel therapeutics at the bedside.
    Jahangir A; Terzic A
    J Mol Cell Cardiol; 2005 Jul; 39(1):99-112. PubMed ID: 15953614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K+ ATP-channel opening and arrhythmogenesis.
    Wilde AA
    J Cardiovasc Pharmacol; 1994; 24 Suppl 4():S35-40. PubMed ID: 7898106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoflurane decreases ATP sensitivity of guinea pig cardiac sarcolemmal KATP channel at reduced intracellular pH.
    Stadnicka A; Bosnjak ZJ
    Anesthesiology; 2003 Feb; 98(2):396-403. PubMed ID: 12552199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy.
    Billman GE
    Pharmacol Ther; 2008 Oct; 120(1):54-70. PubMed ID: 18708091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiological functions of ATP-sensitive K+ channels in myocardial ischemia.
    Hiraoka M
    Jpn Heart J; 1997 May; 38(3):297-315. PubMed ID: 9290566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinidine blocks adenosine 5'-triphosphate-sensitive potassium channels in heart.
    Undrovinas AI; Burnashev N; Eroshenko D; Fleidervish I; Starmer CF; Makielski JC; Rosenshtraukh LV
    Am J Physiol; 1990 Nov; 259(5 Pt 2):H1609-12. PubMed ID: 2240258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K(ATP) channel opening during ischemia: effects on myocardial noradrenaline release and ventricular arrhythmias.
    Remme CA; Schumacher CA; de Jong JW; Fiolet JW; de Groot JR; Coronel R; Wilde AA
    J Cardiovasc Pharmacol; 2001 Sep; 38(3):406-16. PubMed ID: 11486245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Potential role of ATP-sensitive K+ channels in ischemia- and reperfusion-induced arrhythmias].
    Nakaya H
    Kokyu To Junkan; 1993 Jun; 41(6):512-20. PubMed ID: 8337509
    [No Abstract]   [Full Text] [Related]  

  • 12. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes.
    Nichols CG; Lederer WJ
    J Physiol; 1990 Apr; 423():91-110. PubMed ID: 2388163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective mitochondrial adenosine triphosphate-sensitive potassium channel activation is sufficient to precondition human myocardium.
    Pomerantz BJ; Robinson TN; Morrell TD; Heimbach JK; Banerjee A; Harken AH
    J Thorac Cardiovasc Surg; 2000 Aug; 120(2):387-92. PubMed ID: 10917958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glibenclamide inhibition of ATP-sensitive K+ channels and ischemia-induced K+ accumulation in the mammalian heart.
    Wilde AA; Escande D; Schumacher CA; Thuringer D; Mestre M; Fiolet JW
    Pflugers Arch; 1989; 414 Suppl 1():S176. PubMed ID: 2506522
    [No Abstract]   [Full Text] [Related]  

  • 15. Adenosine triphosphate-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. Heart function studies in nonfibrillating isolated hearts.
    Tosaki A; Hellegouarch A
    J Am Coll Cardiol; 1994 Feb; 23(2):487-96. PubMed ID: 8294705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels.
    Zhang DX; Chen YF; Campbell WB; Zou AP; Gross GJ; Li PL
    Circ Res; 2001 Dec; 89(12):1177-83. PubMed ID: 11739283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of anoxic preconditioning on ATP-sensitive potassium channels in guinea-pig ventricular myocytes.
    Zhu Z; Li YL; Li DP; He RR
    Pflugers Arch; 2000 Apr; 439(6):808-13. PubMed ID: 10784356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle.
    Venkatesh N; Lamp ST; Weiss JN
    Circ Res; 1991 Sep; 69(3):623-37. PubMed ID: 1908355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle.
    Venkatesh N; Stuart JS; Lamp ST; Alexander LD; Weiss JN
    Circ Res; 1992 Dec; 71(6):1324-33. PubMed ID: 1423930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.