BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16377742)

  • 1. Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures.
    Stupnikova I; Benamar A; Tolleter D; Grelet J; Borovskii G; Dorne AJ; Macherel D
    Plant Physiol; 2006 Jan; 140(1):326-35. PubMed ID: 16377742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability within a pea core collection of LEAM and HSP22, two mitochondrial seed proteins involved in stress tolerance.
    Avelange-Macherel MH; Payet N; Lalanne D; Neveu M; Tolleter D; Burstin J; Macherel D
    Plant Cell Environ; 2015 Jul; 38(7):1299-311. PubMed ID: 25367071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of recovery of mitochondrial structure and function in desiccation tolerance of pea seeds.
    Wang WQ; Cheng HY; Møller IM; Song SQ
    Physiol Plant; 2012 Jan; 144(1):20-34. PubMed ID: 21910735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying.
    Grelet J; Benamar A; Teyssier E; Avelange-Macherel MH; Grunwald D; Macherel D
    Plant Physiol; 2005 Jan; 137(1):157-67. PubMed ID: 15618423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific alpha-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival.
    Sousa-Majer MJ; Turner NC; Hardie DC; Morton RL; Lamont B; Higgins TJ
    J Exp Bot; 2004 Feb; 55(396):497-505. PubMed ID: 14718496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.
    Jiang Y; Lahlali R; Karunakaran C; Kumar S; Davis AR; Bueckert RA
    Plant Cell Environ; 2015 Nov; 38(11):2387-97. PubMed ID: 26081983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat stress-mediated effects on the morphophysiological, biochemical, and ultrastructural parameters of germinating Melanoxylon brauna Schott. seeds.
    Reis LP; de Lima E Borges EE; Brito DS; Bernardes RC; Dos Santos Araújo R
    Plant Cell Rep; 2021 Sep; 40(9):1773-1787. PubMed ID: 34181045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves.
    Lenne C; Block MA; Garin J; Douce R
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):805-13. PubMed ID: 7487935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state.
    Tolleter D; Hincha DK; Macherel D
    Biochim Biophys Acta; 2010 Oct; 1798(10):1926-33. PubMed ID: 20637181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance.
    Chen K; Fessehaie A; Arora R
    Plant Sci; 2012 Feb; 183():27-36. PubMed ID: 22195574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance.
    Wang WQ; Møller IM; Song SQ
    J Proteomics; 2012 Dec; 77():68-86. PubMed ID: 22796356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).
    Ntuli TM; Pammenter NW; Berjak P
    Biol Res; 2013; 46(2):121-30. PubMed ID: 23959009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium.
    Smiri M; Chaoui A; El Ferjani E
    J Plant Physiol; 2009 Feb; 166(3):259-69. PubMed ID: 18760497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox
    Sghaier-Hammami B; B M Hammami S; Baazaoui N; Gómez-Díaz C; Jorrín-Novo JV
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32660160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Mitochondrial Small Heat Shock Protein HSP22 from Pea is a Thermosoluble Chaperone Prone to Co-Precipitate with Unfolding Client Proteins.
    Avelange-Macherel MH; Rolland A; Hinault MP; Tolleter D; Macherel D
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31877784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chilling acclimation on germination and seedlings response to cold in different seed coat colored wheat (Triticum aestivum L.).
    Calderon Flores P; Yoon JS; Kim DY; Seo YW
    BMC Plant Biol; 2021 Jun; 21(1):252. PubMed ID: 34078280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic Analysis of Desiccation Tolerance and Its Re-Establishment in Different Embryo Axis Tissues of Germinated Pea Seeds.
    Wang WQ; Wang Y; Song XJ; Zhang Q; Cheng HY; Liu J; Song SQ
    J Proteome Res; 2021 May; 20(5):2352-2363. PubMed ID: 33739120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype.
    Radchuk R; Radchuk V; Weschke W; Borisjuk L; Weber H
    Plant Physiol; 2006 Jan; 140(1):263-78. PubMed ID: 16361518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism.
    Weigelt K; Küster H; Radchuk R; Müller M; Weichert H; Fait A; Fernie AR; Saalbach I; Weber H
    Plant J; 2008 Sep; 55(6):909-26. PubMed ID: 18494854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dormancy induction by summer temperatures and/or desiccation in imbibed seeds of trumpet daffodils Narcissus alcaracensis and N. longispathus (Amaryllidaceae).
    Herranz JM; Copete E; Copete MA; Márquez J; Ferrandis P
    Plant Biol (Stuttg); 2017 Jan; 19(1):46-52. PubMed ID: 27094365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.