These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 16377892)

  • 1. Role of L-histidine in conferring tolerance to Ni2+ in Sacchromyces cerevisiae cells.
    Farcasanu IC; Mizunuma M; Nishiyama F; Miyakawa T
    Biosci Biotechnol Biochem; 2005 Dec; 69(12):2343-8. PubMed ID: 16377892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae.
    Joho M; Ishikawa Y; Kunikane M; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1992; 71(287):149-59. PubMed ID: 1360616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible role of histidine in a nickel resistant mechanism of Saccharomyces cerevisiae.
    Joho M; Inouhe M; Tohoyama H; Murayama T
    FEMS Microbiol Lett; 1990 Jan; 54(1-3):333-8. PubMed ID: 2182379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific amino acids moderate the effects on Ni2+ on the testosterone production of mouse leydig cells in vitro.
    Forgács Z; Némethy Z; Révész C; Lázár P
    J Toxicol Environ Health A; 2001 Mar; 62(5):349-58. PubMed ID: 11261897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific amino acids modulate the embryotoxicity of nickel chloride and its transfer to the rat embryo in vitro.
    Saillenfait AM; Payan JP; Sabate JP; Langonne I; Fabry JP; Beydon D
    Toxicol Appl Pharmacol; 1993 Dec; 123(2):299-308. PubMed ID: 8248937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular binding and/or uptake of nickel(II) ions.
    Nieboer E; Stafford AR; Evans SL; Dolovich J
    IARC Sci Publ; 1984; (53):321-31. PubMed ID: 6335884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids.
    Chakrabarti SK; Bai C; Subramanian KS
    Toxicol Appl Pharmacol; 2001 Feb; 170(3):153-65. PubMed ID: 11162780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana.
    Nishida S; Tsuzuki C; Kato A; Aisu A; Yoshida J; Mizuno T
    Plant Cell Physiol; 2011 Aug; 52(8):1433-42. PubMed ID: 21742768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae.
    Pearce DA; Sherman F
    J Bacteriol; 1999 Aug; 181(16):4774-9. PubMed ID: 10438744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea.
    Kerkeb L; Krämer U
    Plant Physiol; 2003 Feb; 131(2):716-24. PubMed ID: 12586895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of culture media on the composition of free amino acids in Saccharomyces cerevisiae yeast].
    Khalilova EA; Abramov ShA
    Prikl Biokhim Mikrobiol; 2001; 37(5):578-81. PubMed ID: 11605471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+.
    Joho M; Tarumi K; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1991; 67(272-273):177-86. PubMed ID: 1779877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of Saccharomyces cerevisiae to cadmium and nickel stress: the use of the sugar cane vinasse as a potential mitigator.
    Oliveira RP; Basso LC; Junior AP; Penna TC; Del Borghi M; Converti A
    Biol Trace Elem Res; 2012 Jan; 145(1):71-80. PubMed ID: 21809054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiology of Matricaria chamomilla exposed to nickel excess.
    Kovácik J; Klejdus B; Kaduková J; Backor M
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):603-9. PubMed ID: 18242701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic amino acid inhibition of cell division and macromolecular synthesis in Saccharomyces cerevisiae.
    Sumrada R; Cooper TG
    J Gen Microbiol; 1978 Sep; 108(1):45-56. PubMed ID: 357680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of liposomes to differentiate between the effects of nickel accumulation and altered food quality in Daphnia magna exposed to dietary nickel.
    Evens R; De Schamphelaere KA; Balcaen L; Wang Y; De Roy K; Resano M; Flórez M; Boon N; Vanhaecke F; Janssen CR
    Aquat Toxicol; 2012 Mar; 109():80-9. PubMed ID: 22210497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the basis for Ni tolerance conferred by the expression of TjZnt1 and TjZnt2 in yeast strains.
    Mizuno T; Usui K; Nishida S; Unno T; Obata H
    Plant Physiol Biochem; 2007 May; 45(5):371-8. PubMed ID: 17475501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-Protein crosslinks induced by nickel compounds in isolated rat renal cortical cells and its antagonism by specific amino acids and magnesium ion.
    Chakrabarti SK; Bai C; Subramanian KS
    Toxicol Appl Pharmacol; 1999 Feb; 154(3):245-55. PubMed ID: 9931284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isolation and characterization of Ni2+ resistant mutants of Saccharomyces cerevisiae.
    Joho M; Imada Y; Murayama T
    Microbios; 1987; 51(208-209):183-90. PubMed ID: 3316939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacitation of hamster spermatozoa with the divalent cation chelators D-penicillamine, L-histidine, and L-cysteine in a protein-free culture medium.
    Andrews JC; Bavister BD
    Gamete Res; 1989 Jun; 23(2):159-70. PubMed ID: 2731901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.