These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16377894)

  • 21. Cloning, expression, and characterization of catechol 1,2-dioxygenase from a phenol-degrading Candida tropicalis JH8 strain.
    Long Y; Yang S; Xie Z; Cheng L
    Prep Biochem Biotechnol; 2016 Oct; 46(7):673-8. PubMed ID: 26760080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of phenol by native microorganisms isolated from coke processing wastewater.
    Chakraborty S; Bhattacharya T; Patel TN; Tiwari KK
    J Environ Biol; 2010 May; 31(3):293-6. PubMed ID: 21046999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition.
    Wang G; Wen J; Li H; Qiu C
    J Ind Microbiol Biotechnol; 2009 Jun; 36(6):809-14. PubMed ID: 19319585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology.
    Kaszycki P; Czechowska K; Petryszak P; Miedzobrodzki J; Pawlik B; Kołoczek H
    Acta Biochim Pol; 2006; 53(3):463-73. PubMed ID: 17019438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents.
    Dos Santos VL; Monteiro Ade S; Braga DT; Santoro MM
    J Hazard Mater; 2009 Jan; 161(2-3):1413-20. PubMed ID: 18541369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Phenol degradation by Rhodococcus opacus strain 1G].
    Shumkova ES; Solianikova IP; Plotnikova EG; Golovleva LA
    Prikl Biokhim Mikrobiol; 2009; 45(1):51-7. PubMed ID: 19235509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Co-metabolism of dual culture in the degradation of phenolic compounds].
    Liu J; Jia XQ; Wen JP
    Huan Jing Ke Xue; 2011 Oct; 32(10):3053-8. PubMed ID: 22279923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of phenol biodegradation by Comamonas testosteroni ZD4-1 and Pseudomonas aeruginosa ZD4-3.
    Chen YX; Liu H; Chen HL
    Biomed Environ Sci; 2003 Jun; 16(2):163-72. PubMed ID: 12964790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.
    Jiang Y; Wen J; Bai J; Jia X; Hu Z
    J Hazard Mater; 2007 Aug; 147(1-2):672-6. PubMed ID: 17597295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration.
    Hupert-Kocurek K; Guzik U; Wojcieszyńska D
    Acta Biochim Pol; 2012; 59(3):345-51. PubMed ID: 22826823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of phenol biodegradation in high salt solutions.
    Peyton BM; Wilson T; Yonge DR
    Water Res; 2002 Nov; 36(19):4811-20. PubMed ID: 12448524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous biodegradation of a phenol and 3,4-dimethylphenol mixture under denitrifying conditions.
    Puig-Grajales L; Rodríguez-Nava O; Razo-Flores E
    Water Sci Technol; 2003; 48(6):171-8. PubMed ID: 14640215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading.
    Jiang HL; Tay JH; Tay ST
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):602-8. PubMed ID: 12802532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of high strength phenol degradation using Bacillus brevis.
    Arutchelvan V; Kanakasabai V; Elangovan R; Nagarajan S; Muralikrishnan V
    J Hazard Mater; 2006 Feb; 129(1-3):216-22. PubMed ID: 16203081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of phenol utilizing bacteria from industrial effluent-contaminated soil and kinetic evaluation of their biodegradation potential.
    Pal Basak S; Sarkar P; Pal P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(1):67-77. PubMed ID: 24117085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis.
    Adav SS; Chen MY; Lee DJ; Ren NQ
    Biotechnol Bioeng; 2007 Apr; 96(5):844-52. PubMed ID: 17001631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of a phenol-degrading bacterium from an industrial activated sludge.
    Geng A; Soh AE; Lim CJ; Loke LC
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):728-35. PubMed ID: 16283294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.