These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 1637814)
1. Recognition of a guanine-cytosine base pair by 8-oxoadenine. Miller PS; Bhan P; Cushman CD; Trapane TL Biochemistry; 1992 Jul; 31(29):6788-93. PubMed ID: 1637814 [TBL] [Abstract][Full Text] [Related]
2. 7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Jetter MC; Hobbs FW Biochemistry; 1993 Apr; 32(13):3249-54. PubMed ID: 8461291 [TBL] [Abstract][Full Text] [Related]
3. Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A triads. Miller PS; Cushman CD Biochemistry; 1993 Mar; 32(12):2999-3004. PubMed ID: 8457563 [TBL] [Abstract][Full Text] [Related]
4. "Paper-clip" type triple helix formation by 5'-d-(TC)3Ta(CT)3Cb(AG)3 (a and b = 0-4) as a function of loop size with and without the pseudoisocytosine base in the Hoogsteen strand. Chin TM; Lin SB; Lee SY; Chang ML; Cheng AY; Chang FC; Pasternack L; Huang DH; Kan LS Biochemistry; 2000 Oct; 39(40):12457-64. PubMed ID: 11015227 [TBL] [Abstract][Full Text] [Related]
5. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
6. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
7. Effect of the 1-(2'-deoxy-beta-D-ribofuranosyl)-3-nitropyrrole residue on the stability of DNA duplexes and triplexes. Amosova O; George J; Fresco JR Nucleic Acids Res; 1997 May; 25(10):1930-4. PubMed ID: 9115359 [TBL] [Abstract][Full Text] [Related]
8. Triplex formation by a psoralen-conjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine. Miller PS; Bi G; Kipp SA; Fok V; DeLong RK Nucleic Acids Res; 1996 Feb; 24(4):730-6. PubMed ID: 8604317 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285 [TBL] [Abstract][Full Text] [Related]
10. Conformation of guanine-8-oxoadenine base pairs in the crystal structure of d(CGCGAATT(O8A)GCG). Leonard GA; Guy A; Brown T; Téoule R; Hunter WN Biochemistry; 1992 Sep; 31(36):8415-20. PubMed ID: 1390625 [TBL] [Abstract][Full Text] [Related]
11. Interactions of cytosine derivatives with T.A interruptions in pyrimidine.purine.pyrimidine DNA triplexes. Verma S; Miller PS Bioconjug Chem; 1996; 7(5):600-5. PubMed ID: 8889023 [TBL] [Abstract][Full Text] [Related]
12. Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. Huang CY; Bi G; Miller PS Nucleic Acids Res; 1996 Jul; 24(13):2606-13. PubMed ID: 8692703 [TBL] [Abstract][Full Text] [Related]
13. Bulge defects in intramolecular pyrimidine.purine.pyrimidine DNA triplexes in solution. Wang Y; Patel DJ Biochemistry; 1995 Apr; 34(16):5696-704. PubMed ID: 7727429 [TBL] [Abstract][Full Text] [Related]
14. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Gowers DM; Bijapur J; Brown T; Fox KR Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282 [TBL] [Abstract][Full Text] [Related]
15. DNA triplex formed by d-A-(G-A)7-G and d-mC-(T-mC)7-T in aqueous solution at neutral pH. Lin SB; Kao CF; Lee SC; Kan LS Anticancer Drug Des; 1994 Feb; 9(1):1-8. PubMed ID: 8141963 [TBL] [Abstract][Full Text] [Related]
16. Triple helical structures involving inosine: there is a penalty for promiscuity. Mills M; Völker J; Klump HH Biochemistry; 1996 Oct; 35(41):13338-44. PubMed ID: 8873600 [TBL] [Abstract][Full Text] [Related]
17. Studies of DNA dumbbells. V. A DNA triplex formed between a 28 base-pair DNA dumbbell substrate and a 16 base linear single strand. Paner TM; Gallo FJ; Doktycz MJ; Benight AS Biopolymers; 1993 Dec; 33(12):1779-89. PubMed ID: 8268406 [TBL] [Abstract][Full Text] [Related]
18. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes. Sugimoto N; Wu P; Hara H; Kawamoto Y Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909 [TBL] [Abstract][Full Text] [Related]
19. Effect of base pair A/C and G/T mismatches on the thermal stabilities of DNA oligomers that form B-Z junctions. Otokiti EO; Sheardy RD Biochemistry; 1997 Sep; 36(38):11419-27. PubMed ID: 9298961 [TBL] [Abstract][Full Text] [Related]
20. Solution structure of an O6-[4-oxo-4-(3-pyridyl)butyl]guanine adduct in an 11 mer DNA duplex: evidence for formation of a base triplex. Peterson LA; Vu C; Hingerty BE; Broyde S; Cosman M Biochemistry; 2003 Nov; 42(45):13134-44. PubMed ID: 14609323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]