BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16378425)

  • 1. Measurements of interfacial viscoelasticity with a quartz crystal microbalance: influence of acoustic scattering from a small crystal-sample contact.
    König AM; Düwel M; Du B; Kunze M; Johannsmann D
    Langmuir; 2006 Jan; 22(1):229-33. PubMed ID: 16378425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergence of dissipation and impedance analysis of quartz crystal microbalance studies.
    Zhang Y; Du B; Chen X; Ma H
    Anal Chem; 2009 Jan; 81(2):642-8. PubMed ID: 19072247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sample heterogeneity on the interpretation of QCM(-D) data: comparison of combined quartz crystal microbalance/atomic force microscopy measurements with finite element method modeling.
    Johannsmann D; Reviakine I; Rojas E; Gallego M
    Anal Chem; 2008 Dec; 80(23):8891-9. PubMed ID: 18954085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quartz crystal microbalance based on torsional piezoelectric resonators.
    Bücking W; Du B; Turshatov A; König AM; Reviakine I; Bode B; Johannsmann D
    Rev Sci Instrum; 2007 Jul; 78(7):074903. PubMed ID: 17672786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance.
    Pax M; Rieger J; Eibl RH; Thielemann C; Johannsmann D
    Analyst; 2005 Nov; 130(11):1474-7. PubMed ID: 16222366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase.
    Pomorska A; Shchukin D; Hammond R; Cooper MA; Grundmeier G; Johannsmann D
    Anal Chem; 2010 Mar; 82(6):2237-42. PubMed ID: 20166672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nanocell for quartz crystal microbalance and quartz crystal microbalance with dissipation-monitoring sensing.
    Ohlsson G; Langhammer C; Zorić I; Kasemo B
    Rev Sci Instrum; 2009 Aug; 80(8):083905. PubMed ID: 19725665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quartz crystal microbalance study of the interfacial nanobubbles.
    Zhang XH
    Phys Chem Chem Phys; 2008 Dec; 10(45):6842-8. PubMed ID: 19015789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of interface slip and viscoelasticity on the dynamic response of droplet quartz crystal microbalances.
    Zhuang H; Lu P; Lim SP; Lee HP
    Anal Chem; 2008 Oct; 80(19):7347-53. PubMed ID: 18767868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency response of a quartz crystal microbalance loaded by liquid drops.
    Zhuang H; Lu P; Lim SP; Lee HP
    Langmuir; 2007 Jun; 23(13):7392-7. PubMed ID: 17500576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance.
    Roach P; McHale G; Evans CR; Shirtcliffe NJ; Newton MI
    Langmuir; 2007 Sep; 23(19):9823-30. PubMed ID: 17705513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D; Kang Q; Li X; Cai H; Wang Y
    Anal Chim Acta; 2007 Jun; 593(2):188-95. PubMed ID: 17543606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stiffness of sphere-plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium.
    Vlachová J; König R; Johannsmann D
    Beilstein J Nanotechnol; 2015; 6():845-56. PubMed ID: 25977855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications.
    Fatoyinbo HO; Hoettges KF; Reddy SM; Hughes MP
    Biosens Bioelectron; 2007 Sep; 23(2):225-32. PubMed ID: 17509862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-independent analysis of QCM data on colloidal particle adsorption.
    Tellechea E; Johannsmann D; Steinmetz NF; Richter RP; Reviakine I
    Langmuir; 2009 May; 25(9):5177-84. PubMed ID: 19397357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation in films of adsorbed nanospheres studied by quartz crystal microbalance (QCM).
    Johannsmann D; Reviakine I; Richter RP
    Anal Chem; 2009 Oct; 81(19):8167-76. PubMed ID: 19746972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of the influence of chain length on the interfacial ordering of L-lysine and L-proline and their homopeptides at hydrophobic and hydrophilic interfaces studied by sum frequency generation and quartz crystal microbalance.
    York RL; Holinga GJ; Somorjai GA
    Langmuir; 2009 Aug; 25(16):9369-74. PubMed ID: 19719227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation.
    Lord MS; Modin C; Foss M; Duch M; Simmons A; Pedersen FS; Milthorpe BK; Besenbacher F
    Biomaterials; 2006 Sep; 27(26):4529-37. PubMed ID: 16716396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for the quartz crystal microbalance frequency response to wetting characteristics of corrugated surfaces.
    Theisen LA; Martin SJ; Hillman AR
    Anal Chem; 2004 Feb; 76(3):796-804. PubMed ID: 14750878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring.
    Schofield AL; Rudd TR; Martin DS; Fernig DG; Edwards C
    Biosens Bioelectron; 2007 Oct; 23(3):407-13. PubMed ID: 17580113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.