These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1637865)

  • 1. The two main states of the elongating ribosome and the role of the alpha-sarcin stem-loop structure of 23S RNA.
    Nierhaus KH; Schilling-Bartetzko S; Twardowski T
    Biochimie; 1992 Apr; 74(4):403-10. PubMed ID: 1637865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding.
    García-Ortega L; Alvarez-García E; Gavilanes JG; Martínez-del-Pozo A; Joseph S
    Nucleic Acids Res; 2010 Jul; 38(12):4108-19. PubMed ID: 20215430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA.
    Marchant A; Hartley MR
    Eur J Biochem; 1994 Nov; 226(1):141-7. PubMed ID: 7957241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-sarcin cleavage of ribosomal RNA is inhibited by the binding of elongation factor G or thiostrepton to the ribosome.
    Miller SP; Bodley JW
    Nucleic Acids Res; 1991 Apr; 19(7):1657-60. PubMed ID: 2027773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors.
    Hausner TP; Atmadja J; Nierhaus KH
    Biochimie; 1987 Sep; 69(9):911-23. PubMed ID: 3126829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis.
    Shi X; Khade PK; Sanbonmatsu KY; Joseph S
    J Mol Biol; 2012 Jun; 419(3-4):125-38. PubMed ID: 22459262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
    Yu H; Chan YL; Wool IG
    J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(2):567-80. PubMed ID: 9878430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of the translating ribosome: allosteric three-site model of elongation.
    Rheinberger HJ
    Biochimie; 1991; 73(7-8):1067-88. PubMed ID: 1742351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of domains 4 and 5 in elongation factor G functions on the ribosome.
    Savelsbergh A; Matassova NB; Rodnina MV; Wintermeyer W
    J Mol Biol; 2000 Jul; 300(4):951-61. PubMed ID: 10891280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of antisense DNA against the alpha-sarcin stem-loop structure of the ribosomal 23S rRNA.
    Meyer HA; Triana-Alonso F; Spahn CM; Twardowski T; Sobkiewicz A; Nierhaus KH
    Nucleic Acids Res; 1996 Oct; 24(20):3996-4002. PubMed ID: 8918803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA.
    Moazed D; Robertson JM; Noller HF
    Nature; 1988 Jul; 334(6180):362-4. PubMed ID: 2455872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The action of pokeweed antiviral protein and ricin A-chain on mutants in the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA.
    Marchant A; Hartley MR
    J Mol Biol; 1995 Dec; 254(5):848-55. PubMed ID: 7500355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance of both the 5'- and 3'-domain of isolated Escherichia coli 23S rRNA against digestion with alpha-sarcin.
    Hausner TP; Nierhaus KH
    Biochem Int; 1988 Oct; 17(4):617-27. PubMed ID: 3071367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phenotype of mutations of the base-pair C2658.G2663 that closes the tetraloop in the sarcin/ricin domain of Escherichia coli 23 S ribosomal RNA.
    Chan YL; Sitikov AS; Wool IG
    J Mol Biol; 2000 May; 298(5):795-805. PubMed ID: 10801349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA.
    Munishkin A; Wool IG
    Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12280-4. PubMed ID: 9356440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The integrity of the sarcin/ricin domain of 23 S ribosomal RNA is not required for elongation factor-independent peptide synthesis.
    Chan YL; Wool IG
    J Mol Biol; 2008 Apr; 378(1):12-9. PubMed ID: 18342885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes in the structure of domains II and V of 28S rRNA in ribosomes treated with the translational inhibitors ricin or alpha-sarcin.
    Larsson SL; Sloma MS; Nygård O
    Biochim Biophys Acta; 2002 Aug; 1577(1):53-62. PubMed ID: 12151095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conserved A-site finger of the 23S rRNA: just one of the intersubunit bridges or a part of the allosteric communication pathway?
    Sergiev PV; Kiparisov SV; Burakovsky DE; Lesnyak DV; Leonov AA; Bogdanov AA; Dontsova OA
    J Mol Biol; 2005 Oct; 353(1):116-23. PubMed ID: 16165153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit.
    Lancaster L; Lambert NJ; Maklan EJ; Horan LH; Noller HF
    RNA; 2008 Oct; 14(10):1999-2012. PubMed ID: 18755834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.