BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16379066)

  • 21. Fluorescent resonance energy transfer based detection of biological contaminants through hybrid quantum dot-quencher interactions.
    Ramadurai D; Norton E; Hale J; Garland JW; Stephenson LD; Stroscio MA; Sivananthan S; Kumar A
    IET Nanobiotechnol; 2008 Jun; 2(2):47. PubMed ID: 18500912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum dots and fluorescent protein FRET-based biosensors.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    Adv Exp Med Biol; 2012; 733():63-74. PubMed ID: 22101713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.
    Khakbaz F; Mahani M
    Anal Biochem; 2017 Apr; 523():32-38. PubMed ID: 28159568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The properties and applications of single-molecule DNA sequencing.
    Thompson JF; Milos PM
    Genome Biol; 2011; 12(2):217. PubMed ID: 21349208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single quantum dot-based nanosensor for rapid and sensitive detection of terminal deoxynucleotidyl transferase.
    Wang LJ; Luo ML; Zhang Q; Tang B; Zhang CY
    Chem Commun (Camb); 2017 Oct; 53(80):11016-11019. PubMed ID: 28936504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene Oxide Quantum Dots Assisted Construction of Fluorescent Aptasensor for Rapid Detection of Pseudomonas aeruginosa in Food Samples.
    Gao R; Zhong Z; Gao X; Jia L
    J Agric Food Chem; 2018 Oct; 66(41):10898-10905. PubMed ID: 30247907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single quantum dot-based nanosensor for multiple DNA detection.
    Zhang CY; Hu J
    Anal Chem; 2010 Mar; 82(5):1921-7. PubMed ID: 20121246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-length-dependent fluorescent sensing based on energy transfer in self-assembled multilayers.
    Sun XY; Liu B; Sun YF; Yu Y
    Biosens Bioelectron; 2014 Nov; 61():466-70. PubMed ID: 24934748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Universal Fluorescence Biosensor Platform Based on Graphene Quantum Dots and Pyrene-Functionalized Molecular Beacons for Detection of MicroRNAs.
    Zhang H; Wang Y; Zhao D; Zeng D; Xia J; Aldalbahi A; Wang C; San L; Fan C; Zuo X; Mi X
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16152-6. PubMed ID: 26200323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality.
    Algar WR; Khachatrian A; Melinger JS; Huston AL; Stewart MH; Susumu K; Blanco-Canosa JB; Oh E; Dawson PE; Medintz IL
    J Am Chem Soc; 2017 Jan; 139(1):363-372. PubMed ID: 28009161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Ratiometric Fluorescent Bioprobe Based on Carbon Dots and Acridone Derivate for Signal Amplification Detection Exosomal microRNA.
    Xia Y; Wang L; Li J; Chen X; Lan J; Yan A; Lei Y; Yang S; Yang H; Chen J
    Anal Chem; 2018 Aug; 90(15):8969-8976. PubMed ID: 29973048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protease sensing with nanoparticle based platforms.
    Welser K; Adsley R; Moore BM; Chan WC; Aylott JW
    Analyst; 2011 Jan; 136(1):29-41. PubMed ID: 20877821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum dot biosensors for ultrasensitive multiplexed diagnostics.
    Geissler D; Charbonnière LJ; Ziessel RF; Butlin NG; Löhmannsröben HG; Hildebrandt N
    Angew Chem Int Ed Engl; 2010 Feb; 49(8):1396-401. PubMed ID: 20108296
    [No Abstract]   [Full Text] [Related]  

  • 35. Quantum dots: Resonant energy-transfer sensor.
    Willard DM; Van Orden A
    Nat Mater; 2003 Sep; 2(9):575-6. PubMed ID: 12951597
    [No Abstract]   [Full Text] [Related]  

  • 36. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles.
    Tang B; Cao L; Xu K; Zhuo L; Ge J; Li Q; Yu L
    Chemistry; 2008; 14(12):3637-44. PubMed ID: 18318025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum dots protected with tiopronin: a new fluorescence system for cell-biology studies.
    de la Fuente JM; Fandel M; Berry CC; Riehle M; Cronin L; Aitchison G; Curtis AS
    Chembiochem; 2005 Jun; 6(6):989-91. PubMed ID: 15852337
    [No Abstract]   [Full Text] [Related]  

  • 38. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA.
    Peng H; Zhang L; Kjällman TH; Soeller C; Travas-Sejdic J
    J Am Chem Soc; 2007 Mar; 129(11):3048-9. PubMed ID: 17315877
    [No Abstract]   [Full Text] [Related]  

  • 39. A quantum dot-intercalating dye dual-donor FRET based biosensor.
    Zhang H; Zhou D
    Chem Commun (Camb); 2012 May; 48(42):5097-9. PubMed ID: 22441131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient fluorescence energy transfer system between fluorescein isothiocyanate and CdTe quantum dots for the detection of silver ions.
    Feng Y; Liu L; Hu S; Zou P; Zhang J; Huang C; Wang Y; Wang S; Zhang X
    Luminescence; 2016 Mar; 31(2):356-363. PubMed ID: 26277997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.