These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 16379280)
1. [Application of Raman spectra to the research of jades excavated from Xue Jiagang site]. Wang R; Feng M; Wu WH; Gao F; Wang CS Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Sep; 25(9):1422-5. PubMed ID: 16379280 [TBL] [Abstract][Full Text] [Related]
2. [A primary Raman microscopic study of the turquoise and its role in provenance-tracking]. She LZ; Qin Y; Feng M; Mao ZW; Xu CY; Huang FC Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2107-10. PubMed ID: 19093571 [TBL] [Abstract][Full Text] [Related]
3. [Application of Raman spectroscopic technique to the identification and investigation of Chinese ancient jades and jade artifacts]. Zhao HX; Gan FX Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):2989-93. PubMed ID: 20101970 [TBL] [Abstract][Full Text] [Related]
4. Raman spectroscopy of some basic chloride containing minerals of lead and copper. Frost RL; Williams PA Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):2071-7. PubMed ID: 15248988 [TBL] [Abstract][Full Text] [Related]
5. Raman spectra of organic compounds kladnoite (C6H4(CO)2NH) and hoelite (C14H8O2)--rare sublimation products crystallising on self-ignited coal heaps. Jehlicka J; Zácek V; Edwards HG; Shcherbakova E; Moroz T Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1053-7. PubMed ID: 17398143 [TBL] [Abstract][Full Text] [Related]
6. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue. Osterrothová K; Jehlicka J Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):576-80. PubMed ID: 18980859 [TBL] [Abstract][Full Text] [Related]
7. Raman spectroscopic study of the antimony bearing mineral langbanite. Bahfenne S; Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2010 Feb; 75(2):710-2. PubMed ID: 20042366 [TBL] [Abstract][Full Text] [Related]
8. Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite. Frost RL; Dickfos MJ Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):143-6. PubMed ID: 18222105 [TBL] [Abstract][Full Text] [Related]
9. [Raman spectra and its application of graphite enclaves in nephrite-jades in Xiuyan, Liaoning]. Qiu ZL; Jiang QY; Luo H; Qin SC; Li LF Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):2985-8. PubMed ID: 21284168 [TBL] [Abstract][Full Text] [Related]
10. Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: examples from major Himalayan and Alpine fluvio-deltaic systems. Andò S; Bersani D; Vignola P; Garzanti E Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):450-5. PubMed ID: 19111499 [TBL] [Abstract][Full Text] [Related]
11. Raman spectroscopic identification of phthalic and mellitic acids in mineral matrices. Osterrothová K; Jehlička J Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1092-8. PubMed ID: 20870453 [TBL] [Abstract][Full Text] [Related]
12. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
13. Analytical Raman spectroscopy in a forensic art context: the non-destructive discrimination of genuine and fake lapis lazuli. Ali EM; Edwards HG Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():415-9. PubMed ID: 24287050 [TBL] [Abstract][Full Text] [Related]
14. [Application of depth-analysis of confocal Raman micro-spectroscopy to chirography identification]. Lin HB; Xu XX; Wang B; Yang YY; Yu G; Zhang CZ; Li J Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jan; 25(1):51-3. PubMed ID: 15852817 [TBL] [Abstract][Full Text] [Related]
15. Raman spectroscopic study of the tellurite minerals: rajite and denningite. Frost RL; Dickfos MJ; Keeffe EC Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1512-5. PubMed ID: 18586552 [TBL] [Abstract][Full Text] [Related]
16. The RAMANITA method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts. Smith DC Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2299-314. PubMed ID: 16029851 [TBL] [Abstract][Full Text] [Related]
17. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318 [TBL] [Abstract][Full Text] [Related]
18. An infrared and Raman spectroscopic study of natural zinc phosphates. Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jun; 60(7):1439-45. PubMed ID: 15147685 [TBL] [Abstract][Full Text] [Related]
19. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Jehlicka J; Vítek P; Edwards HG; Heagraves M; Capoun T Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):410-9. PubMed ID: 18993111 [TBL] [Abstract][Full Text] [Related]
20. Raman spectroscopic study of the tellurite minerals: mackayite and quetzalcoatlite. Frost RL; Dickfos MJ Spectrochim Acta A Mol Biomol Spectrosc; 2009 Mar; 72(2):445-8. PubMed ID: 19054709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]