BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16380432)

  • 1. Involvement of KU80 in T-DNA integration in plant cells.
    Li J; Vaidya M; White C; Vainstein A; Citovsky V; Tzfira T
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19231-6. PubMed ID: 16380432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis.
    Gallego ME; Bleuyard JY; Daoudal-Cotterell S; Jallut N; White CI
    Plant J; 2003 Sep; 35(5):557-65. PubMed ID: 12940949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Agrobacterium T-DNA into the Plant Genome.
    Gelvin SB
    Annu Rev Genet; 2017 Nov; 51():195-217. PubMed ID: 28853920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration.
    Vaghchhipawala ZE; Vasudevan B; Lee S; Morsy MR; Mysore KS
    Plant Cell; 2012 Oct; 24(10):4110-23. PubMed ID: 23064322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome stability of Arabidopsis atm, ku80 and rad51b mutants: somatic and transgenerational responses to stress.
    Yao Y; Bilichak A; Titov V; Golubov A; Kovalchuk I
    Plant Cell Physiol; 2013 Jun; 54(6):982-9. PubMed ID: 23574700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.
    Mestiri I; Norre F; Gallego ME; White CI
    Plant J; 2014 Feb; 77(4):511-20. PubMed ID: 24299074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Arabidopsis Ku80 deletion on the integration of the left border of T-DNA into plant chromosomal DNA via Agrobacterium tumefaciens.
    Yoshihara R; Mitomi Y; Okada M; Shibata H; Tanokami M; Nakajima Y; Inui H; Oono Y; Furudate H; Tanaka S
    Genes Genet Syst; 2020 Oct; 95(4):173-182. PubMed ID: 32848122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress on molecular mechanism of T-DNA transport and integration.
    Zhan YG; Zeng FS; Xin Y
    Yi Chuan Xue Bao; 2005 Jun; 32(6):655-65. PubMed ID: 16018194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agrobacterium-Mediated Transformation of Yeast and Fungi.
    Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ
    Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins.
    Park SY; Vaghchhipawala Z; Vasudevan B; Lee LY; Shen Y; Singer K; Waterworth WM; Zhang ZJ; West CE; Mysore KS; Gelvin SB
    Plant J; 2015 Mar; 81(6):934-46. PubMed ID: 25641249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis.
    Bilichak A; Yao Y; Kovalchuk I
    Plant Biotechnol J; 2014 Jun; 12(5):590-600. PubMed ID: 24472037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity.
    Tzfira T; Vaidya M; Citovsky V
    EMBO J; 2001 Jul; 20(13):3596-607. PubMed ID: 11432846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration.
    Friesner J; Britt AB
    Plant J; 2003 May; 34(4):427-40. PubMed ID: 12753583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ku80 Counters Oxidative Stress-Induced DNA Damage and Cataract Formation in the Human Lens.
    Smith AJ; Ball SS; Manzar K; Bowater RP; Wormstone IM
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7868-74. PubMed ID: 26658510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The non-homologous end-joining pathway is not involved in the radiosensitization of mammalian cells by heat shock.
    Dynlacht JR; Bittner ME; Bethel JA; Beck BD
    J Cell Physiol; 2003 Sep; 196(3):557-64. PubMed ID: 12891712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants.
    Anand A; Krichevsky A; Schornack S; Lahaye T; Tzfira T; Tang Y; Citovsky V; Mysore KS
    Plant Cell; 2007 May; 19(5):1695-708. PubMed ID: 17496122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Structural Features of Thousands of T-DNA Insertion Sites Are Consistent with a Double-Strand Break Repair-Based Insertion Mechanism.
    Kleinboelting N; Huep G; Appelhagen I; Viehoever P; Li Y; Weisshaar B
    Mol Plant; 2015 Nov; 8(11):1651-64. PubMed ID: 26343971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In planta Agrobacterium-mediated transformation by vacuum infiltration.
    Tague BW; Mantis J
    Methods Mol Biol; 2006; 323():215-23. PubMed ID: 16739579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell.
    Lacroix B; Li J; Tzfira T; Citovsky V
    Can J Physiol Pharmacol; 2006; 84(3-4):333-45. PubMed ID: 16902581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium T-DNA integration: molecules and models.
    Tzfira T; Li J; Lacroix B; Citovsky V
    Trends Genet; 2004 Aug; 20(8):375-83. PubMed ID: 15262410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.