These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16380831)

  • 1. Involvement of the motor cortex in the bimanual unloading reaction: a transcranial magnetic stimulation study.
    Kazennikov OV; Solopova IA; Talis VL; Grishin AA; Ioffe ME
    Neurosci Behav Physiol; 2006 Feb; 36(2):177-83. PubMed ID: 16380831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Participation of the motor cortex in the bimanual unloading task: a study by transcranial magnetic stimulation].
    Kazennikov OV; Solopova IA; Talis VL; Grishin AA; Ioffe ME
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(6):759-66. PubMed ID: 15658040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticipatory postural adjustment before bimanual unloading reactions: the role of the motor cortex in motor learning.
    Kazennikov OV; Solopova IA; Talis VL; Ioffe ME
    Neurosci Behav Physiol; 2007 Sep; 37(7):651-7. PubMed ID: 17763984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TMS-responses during anticipatory postural adjustment in bimanual unloading in humans.
    Kazennikov O; Solopova I; Talis V; Grishin A; Ioffe M
    Neurosci Lett; 2005 Aug; 383(3):246-50. PubMed ID: 15955418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interhemispheric motor cortex influence during bimanual unloading.
    Talis VL; Kazennikov OV; Solopova IA; Ioffe ME
    J Integr Neurosci; 2009 Dec; 8(4):409-16. PubMed ID: 20205293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Anticipatory postural adjustment in bimanual unloading: role of the motor cortex in motor learning].
    Kazennikov OV; Solopova IA; Talis VL; Ioffe ME
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(5):603-10. PubMed ID: 17147201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticipatory postural adjustment: the role of motor cortex in the natural and learned bimanual unloading.
    Kazennikov O; Solopova I; Talis V; Ioffe M
    Exp Brain Res; 2008 Mar; 186(2):215-23. PubMed ID: 18060544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arm posture-dependent changes in corticospinal excitability are largely spinal in origin.
    Nuzzo JL; Trajano GS; Barry BK; Gandevia SC; Taylor JL
    J Neurophysiol; 2016 Apr; 115(4):2076-82. PubMed ID: 26864764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial weight support of the arm affects corticomotor selectivity of biceps brachii.
    Runnalls KD; Anson G; Byblow WD
    J Neuroeng Rehabil; 2015 Oct; 12():94. PubMed ID: 26502933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of motor imagery are dependent on motor strategies.
    Liang N; Ni Z; Takahashi M; Murakami T; Yahagi S; Funase K; Kato T; Kasai T
    Neuroreport; 2007 Aug; 18(12):1241-5. PubMed ID: 17632275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of motor evoked potentials in biceps brachii preceding pronator contraction.
    Gerachshenko T; Stinear JW
    Exp Brain Res; 2007 Dec; 183(4):531-9. PubMed ID: 17665175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticomotor excitability of arm muscles modulates according to static position and orientation of the upper limb.
    Mogk JP; Rogers LM; Murray WM; Perreault EJ; Stinear JW
    Clin Neurophysiol; 2014 Oct; 125(10):2046-54. PubMed ID: 24630543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticospinal excitability for flexor carpi radialis decreases with baroreceptor unloading during intentional co-contraction with opposing forearm muscles.
    Buharin VE; Shinohara M
    Exp Brain Res; 2019 Aug; 237(8):1947-1958. PubMed ID: 31129694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independent modulation of corticospinal and group I afferents pathways during upright standing.
    Baudry S; Duchateau J
    Neuroscience; 2014 Sep; 275():162-9. PubMed ID: 24952331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the motor cortex excitability in the task of holding load].
    Kazennikov OV; Levik IuS
    Fiziol Cheloveka; 2009; 35(5):71-8. PubMed ID: 19899694
    [No Abstract]   [Full Text] [Related]  

  • 17. Alterations in the cortical control of standing posture during varying levels of postural threat and task difficulty.
    Tokuno CD; Keller M; Carpenter MG; Márquez G; Taube W
    J Neurophysiol; 2018 Sep; 120(3):1010-1016. PubMed ID: 29790833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subthreshold corticospinal control of anticipatory actions in humans.
    Sangani SG; Raptis HA; Feldman AG
    Behav Brain Res; 2011 Oct; 224(1):145-54. PubMed ID: 21672559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building anticipatory postural adjustment during childhood: a kinematic and electromyographic analysis of unloading in children from 4 to 8 years of age.
    Schmitz C; Martin N; Assaiante C
    Exp Brain Res; 2002 Feb; 142(3):354-64. PubMed ID: 11819044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posture-Dependent Corticomotor Excitability Differs Between the Transferred Biceps in Individuals With Tetraplegia and the Biceps of Nonimpaired Individuals.
    Peterson CL; Rogers LM; Bednar MS; Bryden AM; Keith MW; Perreault EJ; Murray WM
    Neurorehabil Neural Repair; 2017 Apr; 31(4):354-363. PubMed ID: 27932695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.