BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16380924)

  • 1. Development of the escape response in teleost fishes: do ontogenetic changes enable improved performance?
    Gibb AC; Swanson BO; Wesp H; Landels C; Liu C
    Physiol Biochem Zool; 2006; 79(1):7-19. PubMed ID: 16380924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterochrony and the development of the escape response: prehatching movements in the rainbow trout Oncorhynchus mykiss.
    Gibb AC; Liu C; Swanson BO
    J Exp Zool A Ecol Genet Physiol; 2007 Oct; 307(10):556-67. PubMed ID: 17683078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics of aquatic and terrestrial escape responses in mudskippers.
    Swanson BO; Gibb AC
    J Exp Biol; 2004 Nov; 207(Pt 23):4037-44. PubMed ID: 15498949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are larvae of demersal fishes plankton or nekton?
    Leis JM
    Adv Mar Biol; 2006; 51():57-141. PubMed ID: 16905426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and ration effects on components of the IGF system and growth performance of rainbow trout (Oncorhynchus mykiss) during the transition from late stage embryos to early stage juveniles.
    Li M; Leatherland J
    Gen Comp Endocrinol; 2008 Feb; 155(3):668-79. PubMed ID: 17937932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thyroxine induces transitions in red muscle kinetics and steady swimming kinematics in rainbow trout (Oncorhynchus mykiss).
    Coughlin DJ; Forry JA; McGlinchey SM; Mitchell J; Saporetti KA; Stauffer KA
    J Exp Zool; 2001 Jul; 290(2):115-24. PubMed ID: 11471141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparing for escape: anti-predator posture and fast-start performance in gobies.
    Turesson H; Satta A; Domenici P
    J Exp Biol; 2009 Sep; 212(18):2925-33. PubMed ID: 19717674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental plasticity in fish exposed to a water velocity gradient: a complex response.
    Fischer-Rousseau L; Chu KP; Cloutier R
    J Exp Zool B Mol Dev Evol; 2010 Jan; 314(1):67-85. PubMed ID: 19642204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start.
    Wöhl S; Schuster S
    J Exp Biol; 2007 Jan; 210(Pt 2):311-24. PubMed ID: 17210967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The recovery of locomotory activity following exhaustive exercise in juvenile rainbow trout (Oncorhynchus mykiss).
    Lee-Jenkins SS; Binder TR; Karch AP; McDonald DG
    Physiol Biochem Zool; 2007; 80(1):88-98. PubMed ID: 17160882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking swimming performance, cardiac pumping ability and cardiac anatomy in rainbow trout.
    Claireaux G; McKenzie DJ; Genge AG; Chatelier A; Aubin J; Farrell AP
    J Exp Biol; 2005 May; 208(Pt 10):1775-84. PubMed ID: 15879059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces.
    Drucker EG; Lauder GV
    J Exp Biol; 2005 Dec; 208(Pt 23):4479-94. PubMed ID: 16339868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures.
    McGee MR; Julius ML; Vajda AM; Norris DO; Barber LB; Schoenfuss HL
    Aquat Toxicol; 2009 Mar; 91(4):355-61. PubMed ID: 19162341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swimming in four goldfish Carassius auratus morphotypes: understanding functional design and performance employing artificially selected forms.
    Blake RW; Li J; Chan KH
    J Fish Biol; 2009 Aug; 75(3):591-617. PubMed ID: 20738559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenging zebrafish escape responses by increasing water viscosity.
    Danos N; Lauder GV
    J Exp Biol; 2012 Jun; 215(Pt 11):1854-62. PubMed ID: 22573764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationships among sprint performance, voluntary swimming activity, and social dominance in juvenile rainbow trout.
    McDonald DG; Keeler RA; McFarlane WJ
    Physiol Biochem Zool; 2007; 80(6):619-34. PubMed ID: 17909998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes.
    Hale ME; Day RD; Thorsen DH; Westneat MW
    J Exp Biol; 2006 Oct; 209(Pt 19):3708-18. PubMed ID: 16985188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling of the fast-start escape response of juvenile bluegills.
    Gerry SP; Belden J; Bisaccia M; George K; Mahoney T; Ellerby DJ
    Zoology (Jena); 2016 Dec; 119(6):518-525. PubMed ID: 27263833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Social interactions, predation behaviour and fast start performance are affected by ammonia exposure in brown trout (Salmo trutta L.).
    Tudorache C; Blust R; De Boeck G
    Aquat Toxicol; 2008 Nov; 90(2):145-53. PubMed ID: 18829121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.