These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16381030)

  • 1. Examining the role of endogenous opioids in learned odor-stroke associations in infant rats.
    Roth TL; Sullivan RM
    Dev Psychobiol; 2006 Jan; 48(1):71-8. PubMed ID: 16381030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consolidation and expression of a shock-induced odor preference in rat pups is facilitated by opioids.
    Roth TL; Sullivan RM
    Physiol Behav; 2003 Jan; 78(1):135-42. PubMed ID: 12536020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous opioids and their role in odor preference acquisition and consolidation following odor-shock conditioning in infant rats.
    Roth TL; Sullivan RM
    Dev Psychobiol; 2001 Nov; 39(3):188-98. PubMed ID: 11745312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opioid modulation of Fos protein expression and olfactory circuitry plays a pivotal role in what neonates remember.
    Roth TL; Moriceau S; Sullivan RM
    Learn Mem; 2006; 13(5):590-8. PubMed ID: 17015856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memory of early maltreatment: neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning.
    Roth TL; Sullivan RM
    Biol Psychiatry; 2005 Apr; 57(8):823-31. PubMed ID: 15820702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Norepinephrine-induced plasticity and one-trial olfactory learning in neonatal rats.
    Sullivan RM; McGaugh JL; Leon M
    Brain Res Dev Brain Res; 1991 Jun; 60(2):219-28. PubMed ID: 1654232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training.
    McLean JH; Harley CW; Darby-King A; Yuan Q
    Learn Mem; 1999; 6(6):608-18. PubMed ID: 10641765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emotion regulation and touch in infants: the role of cholecystokinin and opioids.
    Weller A; Feldman R
    Peptides; 2003 May; 24(5):779-88. PubMed ID: 12895666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of olfactory bulb norepinephrine in early olfactory learning.
    Sullivan RM; Zyzak DR; Skierkowski P; Wilson DA
    Brain Res Dev Brain Res; 1992 Dec; 70(2):279-82. PubMed ID: 1477962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between perinatal and neonatal associative learning defined by contiguous olfactory and tactile stimulation.
    Domínguez HD; López MF; Molina JC
    Neurobiol Learn Mem; 1999 May; 71(3):272-88. PubMed ID: 10196106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats.
    Wilson DA; Leon M
    J Neurophysiol; 1988 Jun; 59(6):1770-82. PubMed ID: 3404204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala.
    Moriceau S; Wilson DA; Levine S; Sullivan RM
    J Neurosci; 2006 Jun; 26(25):6737-48. PubMed ID: 16793881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Norepinephrine and learning-induced plasticity in infant rat olfactory system.
    Sullivan RM; Wilson DA; Leon M
    J Neurosci; 1989 Nov; 9(11):3998-4006. PubMed ID: 2585063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maternal and littermate deprivation disrupts maternal behavior and social-learning of food preference in adulthood: tactile stimulation, nest odor, and social rearing prevent these effects.
    Melo AI; Lovic V; Gonzalez A; Madden M; Sinopoli K; Fleming AS
    Dev Psychobiol; 2006 Apr; 48(3):209-19. PubMed ID: 16568415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurobiology of secure infant attachment and attachment despite adversity: a mouse model.
    Roth TL; Raineki C; Salstein L; Perry R; Sullivan-Wilson TA; Sloan A; Lalji B; Hammock E; Wilson DA; Levitt P; Okutani F; Kaba H; Sullivan RM
    Genes Brain Behav; 2013 Oct; 12(7):673-80. PubMed ID: 23927771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradoxical neurobehavioral rescue by memories of early-life abuse: the safety signal value of odors learned during abusive attachment.
    Raineki C; Sarro E; Rincón-Cortés M; Perry R; Boggs J; Holman CJ; Wilson DA; Sullivan RM
    Neuropsychopharmacology; 2015 Mar; 40(4):906-14. PubMed ID: 25284320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posttraining D1 receptor blockade impairs odor conditioning in neonatal rats.
    Weldon DA; Travis ML; Kennedy DA
    Behav Neurosci; 1991 Jun; 105(3):450-8. PubMed ID: 1863365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-unit analysis of postnatal olfactory learning: modified olfactory bulb output response patterns to learned attractive odors.
    Wilson DA; Sullivan RM; Leon M
    J Neurosci; 1987 Oct; 7(10):3154-62. PubMed ID: 3668621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early odor preference training increases olfactory bulb norepinephrine.
    Rangel S; Leon M
    Brain Res Dev Brain Res; 1995 Apr; 85(2):187-91. PubMed ID: 7600666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-HT2 receptor involvement in conditioned olfactory learning in the neonate rat pup.
    McLean JH; Darby-King A; Hodge E
    Behav Neurosci; 1996 Dec; 110(6):1426-34. PubMed ID: 8986343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.