These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1638116)

  • 1. Myc and Max function as a nucleoprotein complex.
    Blackwood EM; Kretzner L; Eisenman RN
    Curr Opin Genet Dev; 1992 Apr; 2(2):227-35. PubMed ID: 1638116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation.
    Lüscher B; Larsson LG
    Oncogene; 1999 May; 18(19):2955-66. PubMed ID: 10378692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. c-Myc does not require max for transcriptional activity in PC-12 cells.
    Ribon V; Leff T; Saltiel AR
    Mol Cell Neurosci; 1994 Jun; 5(3):277-82. PubMed ID: 8087425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo.
    Grandori C; Mac J; Siëbelt F; Ayer DE; Eisenman RN
    EMBO J; 1996 Aug; 15(16):4344-57. PubMed ID: 8861962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene-regulatory properties of Myc helix-loop-helix/leucine zipper mutants: Max-dependent DNA binding and transcriptional activation in yeast correlates with transforming capacity.
    Crouch DH; Fisher F; Clark W; Jayaraman PS; Goding CR; Gillespie DA
    Oncogene; 1993 Jul; 8(7):1849-55. PubMed ID: 8510929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers.
    Bousset K; Henriksson M; Lüscher-Firzlaff JM; Litchfield DW; Lüscher B
    Oncogene; 1993 Dec; 8(12):3211-20. PubMed ID: 8247525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myc protein: partners and antagonists.
    Västrik I; Mäkelä TP; Koskinen PJ; Klefstrom J; Alitalo K
    Crit Rev Oncog; 1994; 5(1):59-68. PubMed ID: 7948108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function and regulation of the transcription factors of the Myc/Max/Mad network.
    Lüscher B
    Gene; 2001 Oct; 277(1-2):1-14. PubMed ID: 11602341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of sequences responsible for the differential regulation of Myc function by delta Max and Max.
    Västrik I; Mäkelä TP; Koskinen PJ; Alitalo K
    Oncogene; 1995 Aug; 11(3):553-60. PubMed ID: 7630640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of Max: role of basic, helix-loop-helix/leucine zipper domains in DNA binding, dimerization and regulation of Myc-mediated transcriptional activation.
    Reddy CD; Dasgupta P; Saikumar P; Dudek H; Rauscher FJ; Reddy EP
    Oncogene; 1992 Oct; 7(10):2085-92. PubMed ID: 1408152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The leucine zippers of the HLH-LZ proteins Max and c-Myc preferentially form heterodimers.
    Muhle-Goll C; Nilges M; Pastore A
    Biochemistry; 1995 Oct; 34(41):13554-64. PubMed ID: 7577944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myc/Max and other helix-loop-helix/leucine zipper proteins bend DNA toward the minor groove.
    Fisher DE; Parent LA; Sharp PA
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11779-83. PubMed ID: 1465398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max.
    Davis LJ; Halazonetis TD
    Oncogene; 1993 Jan; 8(1):125-32. PubMed ID: 8423990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and properties of a Myc derivative that efficiently homodimerizes.
    Soucek L; Helmer-Citterich M; Sacco A; Jucker R; Cesareni G; Nasi S
    Oncogene; 1998 Nov; 17(19):2463-72. PubMed ID: 9824157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc.
    Blackwood EM; Eisenman RN
    Science; 1991 Mar; 251(4998):1211-7. PubMed ID: 2006410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors.
    Nair SK; Burley SK
    Cell; 2003 Jan; 112(2):193-205. PubMed ID: 12553908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
    Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Myc: Max complex formation and its potential role in cell proliferation.
    Blackwood EM; Eisenman RN
    Tohoku J Exp Med; 1992 Oct; 168(2):195-202. PubMed ID: 1306304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper.
    Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD
    J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells.
    Li Z; Van Calcar S; Qu C; Cavenee WK; Zhang MQ; Ren B
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8164-9. PubMed ID: 12808131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.