These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 16381518)

  • 61. Speckle reduction in optical coherence tomography images using digital filtering.
    Ozcan A; Bilenca A; Desjardins AE; Bouma BE; Tearney GJ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1901-10. PubMed ID: 17728812
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Multiple scattering in optical coherence tomography. I. Investigation and modeling.
    Karamata B; Laubscher M; Leutenegger M; Bourquin S; Lasser T; Lambelet P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jul; 22(7):1369-79. PubMed ID: 16053158
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample.
    Kasseck C; Kratz M; Torcasio A; Gerhardt NC; van Lenthe GH; Gambichler T; Hoffmann K; Jones DB; Hofmann MR
    J Biomed Opt; 2010; 15(4):046019. PubMed ID: 20799821
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Signal processing for sidelobe suppression in optical coherence tomography images.
    Wang Y; Liang Y; Xu K
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):415-21. PubMed ID: 20208930
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A practical inverse-problem approach to digital holographic reconstruction.
    Bourquard A; Pavillon N; Bostan E; Depeursinge C; Unser M
    Opt Express; 2013 Feb; 21(3):3417-33. PubMed ID: 23481801
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Speckle statistics in optical coherence tomography.
    Karamata B; Hassler K; Laubscher M; Lasser T
    J Opt Soc Am A Opt Image Sci Vis; 2005 Apr; 22(4):593-6. PubMed ID: 15839265
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography.
    Wang RK; Ma Z
    Phys Med Biol; 2006 Jun; 51(12):3231-9. PubMed ID: 16757873
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A time delay correction technique for SS-OCT.
    Wang Y; Chen X; Chen X; Yu D
    J Xray Sci Technol; 2015; 23(6):783-9. PubMed ID: 26756413
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fast Fourier backprojection for frequency-domain optoacoustic tomography.
    Mohajerani P; Kellnberger S; Ntziachristos V
    Opt Lett; 2014 Sep; 39(18):5455-8. PubMed ID: 26466296
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo.
    Shimada Y; Nakagawa H; Sadr A; Wada I; Nakajima M; Nikaido T; Otsuki M; Tagami J; Sumi Y
    J Biophotonics; 2014 Jul; 7(7):506-13. PubMed ID: 23450799
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo gated 4D imaging of the embryonic heart using optical coherence tomography.
    Jenkins MW; Chughtai OQ; Basavanhally AN; Watanabe M; Rollins AM
    J Biomed Opt; 2007; 12(3):030505. PubMed ID: 17614708
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging.
    Chen Y; Burnes DL; de Bruin M; Mujat M; de Boer JF
    J Biomed Opt; 2009; 14(2):024016. PubMed ID: 19405746
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Three-dimensional high-resolution optical coherence tomography (OCT) imaging of human kidney.
    Li Q; Onozato M; Andrews PM; Paek A; Duttaroy A; Shirmahamoodi B; Jiang J; Cable A; Chen Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5741-3. PubMed ID: 19963648
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Superresolution of three-dimensional optical imaging by use of evanescent waves.
    Chaumet PC; Belkebir K; Sentenac A
    Opt Lett; 2004 Dec; 29(23):2740-2. PubMed ID: 15605490
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets.
    Zawadzki RJ; Fuller AR; Wiley DF; Hamann B; Choi SS; Werner JS
    J Biomed Opt; 2007; 12(4):041206. PubMed ID: 17867795
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Axial resolution improvement by modulated deconvolution in Fourier domain optical coherence tomography.
    Bousi E; Pitris C
    J Biomed Opt; 2012 Jul; 17(7):071307. PubMed ID: 22894468
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phase-resolved Doppler optical coherence tomography--limitations and improvements.
    Szkulmowska A; Szkulmowski M; Kowalczyk A; Wojtkowski M
    Opt Lett; 2008 Jul; 33(13):1425-7. PubMed ID: 18594653
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cell refractive index tomography by digital holographic microscopy.
    Charrière F; Marian A; Montfort F; Kuehn J; Colomb T; Cuche E; Marquet P; Depeursinge C
    Opt Lett; 2006 Jan; 31(2):178-80. PubMed ID: 16441022
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Speckle reduction in optical coherence tomography by image registration and matrix completion.
    Cheng J; Duan L; Wong DW; Tao D; Akiba M; Liu J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):162-9. PubMed ID: 25333114
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Automated retinal shadow compensation of optical coherence tomography images.
    Fabritius T; Makita S; Hong Y; Myllylä R; Yasuno Y
    J Biomed Opt; 2009; 14(1):010503. PubMed ID: 19256685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.