These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16381525)

  • 1. Radiative transfer code SHARM for atmospheric and terrestrial applications.
    Lyapustin AI
    Appl Opt; 2005 Dec; 44(36):7764-72. PubMed ID: 16381525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces.
    Lyapustin A; Wang Y
    Appl Opt; 2005 Dec; 44(35):7602-10. PubMed ID: 16363785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study.
    Lyapustin A
    Appl Opt; 2002 Sep; 41(27):5607-15. PubMed ID: 12269559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study.
    Kotchenova SY; Vermote EF; Levy R; Lyapustin A
    Appl Opt; 2008 May; 47(13):2215-26. PubMed ID: 18449285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance.
    Kotchenova SY; Vermote EF; Matarrese R; Klemm FJ
    Appl Opt; 2006 Sep; 45(26):6762-74. PubMed ID: 16926910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces.
    Kotchenova SY; Vermote EF
    Appl Opt; 2007 Jul; 46(20):4455-64. PubMed ID: 17579701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spherical vector radiative transfer model for satellite ocean color remote sensing.
    Xu F; He X; Jin X; Cai W; Bai Y; Wang D; Gong F; Zhu Q
    Opt Express; 2023 Mar; 31(7):11192-11212. PubMed ID: 37155761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region.
    Liu X; Yang Q; Li H; Jin Z; Wu W; Kizer S; Zhou DK; Yang P
    Appl Opt; 2016 Oct; 55(29):8236-8247. PubMed ID: 27828068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system.
    Gjerstad KI; Stamnes JJ; Hamre B; Lotsberg JK; Yan B; Stamnes K
    Appl Opt; 2003 May; 42(15):2609-22. PubMed ID: 12776996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete Ordinate Adding Method (DOAM), a new solver for Advanced Radiative transfer Modeling System (ARMS).
    Shi YN; Yang J; Weng F
    Opt Express; 2021 Feb; 29(3):4700-4720. PubMed ID: 33771040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Systematic Sensitivity Study on Surface Pixel Shifts in High Spatial Resolution Satellite Images Resulting from Atmospheric Refraction in the Sensor to Surface Ray Path.
    Gao BC; Ward E; Bowles J; Yingling A
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33271835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres.
    Li W; Zhang F; Shi YN; Iwabuchi H; Zhu M; Li J; Han W; Letu H; Ishimoto H
    Opt Express; 2020 Aug; 28(18):25730-25749. PubMed ID: 32906858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric correction of ocean-color sensors: effects of the Earth's curvature.
    Ding K; Gordon HR
    Appl Opt; 1994 Oct; 33(30):7096-106. PubMed ID: 20941262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner.
    Gordon HR; Brown JW; Evans RH
    Appl Opt; 1988 Mar; 27(5):862-71. PubMed ID: 20523701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operational Remote Sensing of Aerosols over Land to Account for Directional Effects.
    Ramon D; Santer R
    Appl Opt; 2001 Jun; 40(18):3060-75. PubMed ID: 18357327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.
    Wang M
    Opt Express; 2016 May; 24(11):12414-29. PubMed ID: 27410156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated efficient radiative transfer model named Dayu for simulating the imager measurements in cloudy atmospheres.
    Li W; Zhang F; Lu C; Jin J; Shi YN; Cai Y; Hu S; Han W
    Opt Express; 2023 May; 31(10):15256-15288. PubMed ID: 37157632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.
    Gilerson A; Carrizo C; Foster R; Harmel T
    Opt Express; 2018 Apr; 26(8):9615-9633. PubMed ID: 29715911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method.
    Ma LX; Wang FQ; Wang CA; Wang CC; Tan JY
    Appl Opt; 2015 Nov; 54(33):9863-74. PubMed ID: 26836550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a new radiative-transfer-based model for remote sensing of terrestrial surface albedo.
    Cui S; Zhen X; Wang Z; Yang S; Zhu W; Li X; Huang H; Wei H
    Opt Lett; 2015 Aug; 40(16):3842-5. PubMed ID: 26274674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.