BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16381818)

  • 1. Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source.
    Ronen M; Botstein D
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):389-94. PubMed ID: 16381818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae.
    Verma M; Bhat PJ; Venkatesh KV
    Biochem J; 2005 Jun; 388(Pt 3):843-9. PubMed ID: 15698380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8.
    Rahner A; Schöler A; Martens E; Gollwitzer B; Schüller HJ
    Nucleic Acids Res; 1996 Jun; 24(12):2331-7. PubMed ID: 8710504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes.
    Vincent O; Carlson M
    EMBO J; 1998 Dec; 17(23):7002-8. PubMed ID: 9843506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of the role of Grr1p in glucose sensing by Saccharomyces cerevisiae through genome-wide transcription analysis.
    Westergaard SL; Bro C; Olsson L; Nielsen J
    FEMS Yeast Res; 2004 Dec; 5(3):193-204. PubMed ID: 15556081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter.
    Palomino A; Herrero P; Moreno F
    Nucleic Acids Res; 2006; 34(5):1427-38. PubMed ID: 16528100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1.
    Lodi T; Fontanesi F; Guiard B
    Mol Genet Genomics; 2002 Jan; 266(5):838-47. PubMed ID: 11810259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose and nitrogen regulate the switch from histone deacetylation to acetylation for expression of early meiosis-specific genes in budding yeast.
    Pnueli L; Edry I; Cohen M; Kassir Y
    Mol Cell Biol; 2004 Jun; 24(12):5197-208. PubMed ID: 15169885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: role of the key transcription factors acting in this process.
    Levi CE; Cardillo SB; Bertotti S; Ríos C; Correa García S; Moretti MB
    Biochem Biophys Res Commun; 2012 May; 421(3):572-7. PubMed ID: 22525679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae.
    McNabb DS; Pinto I
    Eukaryot Cell; 2005 Nov; 4(11):1829-39. PubMed ID: 16278450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription.
    Ozcan S; Leong T; Johnston M
    Mol Cell Biol; 1996 Nov; 16(11):6419-26. PubMed ID: 8887670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ternary complex formation of Ino2p-Ino4p transcription factors and Apl2p adaptin beta subunit in yeast.
    Nikawa J; Yata M; Motomura M; Miyoshi N; Ueda T; Hisada D
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2604-12. PubMed ID: 17090927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae.
    Rahner A; Hiesinger M; Schüller HJ
    Mol Microbiol; 1999 Oct; 34(1):146-56. PubMed ID: 10540293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.