BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16381954)

  • 1. AOBase: a database for antisense oligonucleotides selection and design.
    Bo X; Lou S; Sun D; Yang J; Wang S
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D664-7. PubMed ID: 16381954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA.
    Bo X; Wang S
    Bioinformatics; 2005 Apr; 21(8):1401-2. PubMed ID: 15598838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sfold web server for statistical folding and rational design of nucleic acids.
    Ding Y; Chan CY; Lawrence CE
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W135-41. PubMed ID: 15215366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu.
    't Hoen PA; Out R; Commandeur JN; Vermeulen NP; van Batenburg FH; Manoharan M; van Berkel TJ; Biessen EA; Bijsterbosch MK
    RNA; 2002 Dec; 8(12):1572-83. PubMed ID: 12515389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMOD: a morpholino oligonucleotide selection tool.
    Klee EW; Shim KJ; Pickart MA; Ekker SC; Ellis LB
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W506-11. PubMed ID: 15980523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design and rapid screening of antisense oligonucleotides for prokaryotic gene modulation.
    Shao Y; Wu Y; Chan CY; McDonough K; Ding Y
    Nucleic Acids Res; 2006; 34(19):5660-9. PubMed ID: 17038332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hairpin extensions enhance the efficacy of mycolyl transferase-specific antisense oligonucleotides targeting Mycobacterium tuberculosis.
    Harth G; Zamecnik PC; Tabatadze D; Pierson K; Horwitz MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7199-204. PubMed ID: 17438292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A potent inhibitor of prothrombin gene expression as a result of standardized target site selection and design of antisense oligonucleotides.
    Böhl M; Schwenzer B
    Oligonucleotides; 2005; 15(3):172-82. PubMed ID: 16201905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bias in nucleotide composition of antisense oligonucleotides.
    Smetsers TF; Boezeman JB; Mensink EJ
    Antisense Nucleic Acid Drug Dev; 1996; 6(1):63-7. PubMed ID: 8783797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides.
    Hussain M; Shchepinov M; Sohail M; Benter IF; Hollins AJ; Southern EM; Akhtar S
    J Control Release; 2004 Sep; 99(1):139-55. PubMed ID: 15342187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific inhibition of influenza virus RNA polymerase and nucleoprotein gene expression by liposomally encapsulated antisense phosphorothioate oligonucleotides in MDCK cells.
    Abe T; Suzuki S; Hatta T; Takai K; Yokota T; Takaku H
    Antivir Chem Chemother; 1998 May; 9(3):253-62. PubMed ID: 9875404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico determination of potential antisense targets for human beta-globin variants.
    Arrigo P; Ivaldi G; Cardo PP
    In Silico Biol; 2002; 2(2):143-50. PubMed ID: 12066838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of antisense oligonucleotides on the basis of genomic frequency of the target sequence.
    Han J; Zhu Z; Hsu C; Finley WH
    Antisense Res Dev; 1994; 4(1):53-65. PubMed ID: 8061516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OligoMatcher: analysis and selection of specific oligonucleotide sequences for gene silencing by antisense or siRNA.
    Mamidipalli S; Palakal M; Li S
    Appl Bioinformatics; 2006; 5(2):121-4. PubMed ID: 16722778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical improvements in the computational target search for antisense oligonucleotides.
    Far RK; Leppert J; Frank K; Sczakiel G
    Oligonucleotides; 2005; 15(3):223-33. PubMed ID: 16201910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific administration of antisense oligonucleotides using biodegradable polymer microspheres provides sustained delivery and improved subcellular biodistribution in the neostriatum of the rat brain.
    Khan A; Sommer W; Fuxe K; Akhtar S
    J Drug Target; 2000; 8(5):319-34. PubMed ID: 11328659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense hairpin loop oligonucleotides as inhibitors of expression of multidrug resistance-associated protein 1: their stability in fetal calf serum and human plasma.
    Rebowski G; Wójcik M; Boczkowska M; Gendaszewska E; Soszyński M; Bartosz G; Niewiarowski W
    Acta Biochim Pol; 2001; 48(4):1061-76. PubMed ID: 11995968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental differences in the equilibrium considerations for siRNA and antisense oligodeoxynucleotide design.
    Lu ZJ; Mathews DH
    Nucleic Acids Res; 2008 Jun; 36(11):3738-45. PubMed ID: 18483081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Suitable Target Regions and Analyzing Off-Target Effects of Therapeutic Oligonucleotides.
    Pedersen L; Hagedorn PH; Koch T
    Methods Mol Biol; 2019; 2036():261-282. PubMed ID: 31410803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide.
    Fluiter K; Frieden M; Vreijling J; Rosenbohm C; De Wissel MB; Christensen SM; Koch T; Ørum H; Baas F
    Chembiochem; 2005 Jun; 6(6):1104-9. PubMed ID: 15861430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.