These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 16382174)
1. Reduction of 13-deoxydoxorubicin and daunorubicinol anthraquinones by human carbonyl reductase. Slupe A; Williams B; Larson C; Lee LM; Primbs T; Bruesch AJ; Bjorklund C; Warner DL; Peloquin J; Shadle SE; Gambliel HA; Cusack BJ; Olson RD; Charlier HA Cardiovasc Toxicol; 2005; 5(4):365-76. PubMed ID: 16382174 [TBL] [Abstract][Full Text] [Related]
2. Naturally occurring variants of human aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin. Bains OS; Grigliatti TA; Reid RE; Riggs KW J Pharmacol Exp Ther; 2010 Dec; 335(3):533-45. PubMed ID: 20837989 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the Canine Anthracycline-Metabolizing Enzyme Carbonyl Reductase 1 (cbr1) and the Functional Isoform cbr1 V218. Ferguson DC; Cheng Q; Blanco JG Drug Metab Dispos; 2015 Jul; 43(7):922-7. PubMed ID: 25918240 [TBL] [Abstract][Full Text] [Related]
4. Two nonsynonymous single nucleotide polymorphisms of human carbonyl reductase 1 demonstrate reduced in vitro metabolism of daunorubicin and doxorubicin. Bains OS; Karkling MJ; Grigliatti TA; Reid RE; Riggs KW Drug Metab Dispos; 2009 May; 37(5):1107-14. PubMed ID: 19204081 [TBL] [Abstract][Full Text] [Related]
5. Understanding the binding of daunorubicin and doxorubicin to NADPH-dependent cytosolic reductases by computational methods. Pirolli D; Giardina B; Mordente A; Ficarra S; De Rosa MC Eur J Med Chem; 2012 Oct; 56():145-54. PubMed ID: 22982121 [TBL] [Abstract][Full Text] [Related]
6. Protection against daunorubicin cytotoxicity by expression of a cloned human carbonyl reductase cDNA in K562 leukemia cells. Gonzalez B; Akman S; Doroshow J; Rivera H; Kaplan WD; Forrest GL Cancer Res; 1995 Oct; 55(20):4646-50. PubMed ID: 7553643 [TBL] [Abstract][Full Text] [Related]
7. Aldo-keto reductase 1C2 fails to metabolize doxorubicin and daunorubicin in vitro. Takahashi RH; Bains OS; Pfeifer TA; Grigliatti TA; Reid RE; Riggs KW Drug Metab Dispos; 2008 Jun; 36(6):991-4. PubMed ID: 18322072 [TBL] [Abstract][Full Text] [Related]
8. Interactions between cyclophosphamide and doxorubicin metabolism in rats. II. Effect of cyclophosphamide on the aldoketoreductase system. Dodion P; Akman SR; Tamburini JM; Riggs CE; Colvin OM; Bachur NR J Pharmacol Exp Ther; 1986 Apr; 237(1):271-4. PubMed ID: 3514847 [TBL] [Abstract][Full Text] [Related]
9. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1. Hintzpeter J; Hornung J; Ebert B; Martin HJ; Maser E Chem Biol Interact; 2015 Jun; 234():162-8. PubMed ID: 25541467 [TBL] [Abstract][Full Text] [Related]
10. AKR1B10 induces cell resistance to daunorubicin and idarubicin by reducing C13 ketonic group. Zhong L; Shen H; Huang C; Jing H; Cao D Toxicol Appl Pharmacol; 2011 Aug; 255(1):40-7. PubMed ID: 21640744 [TBL] [Abstract][Full Text] [Related]
11. Carbonyl reduction of daunorubicin in rabbit liver and heart. Pröpper D; Maser E Pharmacol Toxicol; 1997 May; 80(5):240-5. PubMed ID: 9181603 [TBL] [Abstract][Full Text] [Related]
12. A correlation between cytotoxicity and reductase-mediated metabolism in cell lines treated with doxorubicin and daunorubicin. Bains OS; Szeitz A; Lubieniecka JM; Cragg GE; Grigliatti TA; Riggs KW; Reid RE J Pharmacol Exp Ther; 2013 Nov; 347(2):375-87. PubMed ID: 23995598 [TBL] [Abstract][Full Text] [Related]
13. Carbonyl reduction pathway in hepatic in vitro metabolism of anthracyclines: Impact of structure on biotransformation rate. Piska K; Jamrozik M; Koczurkiewicz-Adamczyk P; Bucki A; Żmudzki P; Kołaczkowski M; Pękala E Toxicol Lett; 2021 May; 342():50-57. PubMed ID: 33581289 [TBL] [Abstract][Full Text] [Related]
14. Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. Novel linkage between anthracycline metabolism and iron-induced cardiotoxicity. Minotti G; Cavaliere AF; Mordente A; Rossi M; Schiavello R; Zamparelli R; Possati G J Clin Invest; 1995 Apr; 95(4):1595-605. PubMed ID: 7706466 [TBL] [Abstract][Full Text] [Related]
16. Potent inhibition of human carbonyl reductase 1 (CBR1) by the prenylated chalconoid xanthohumol and its related prenylflavonoids isoxanthohumol and 8-prenylnaringenin. Seliger JM; Martin HJ; Maser E; Hintzpeter J Chem Biol Interact; 2019 May; 305():156-162. PubMed ID: 30849340 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of polymorphic human carbonyl reductase 1 (CBR1) by the cardioprotectant flavonoid 7-monohydroxyethyl rutoside (monoHER). Gonzalez-Covarrubias V; Kalabus JL; Blanco JG Pharm Res; 2008 Jul; 25(7):1730-4. PubMed ID: 18449627 [TBL] [Abstract][Full Text] [Related]
18. Glucose-6-phosphate dehydrogenase deficiency severely restricts the biotransformation of daunorubicin in human erythrocytes. Amitai Y; Bhooma T; Frischer H J Lab Clin Med; 1996 Jun; 127(6):588-98. PubMed ID: 8648264 [TBL] [Abstract][Full Text] [Related]
19. A functional genetic polymorphism on human carbonyl reductase 1 (CBR1 V88I) impacts on catalytic activity and NADPH binding affinity. Gonzalez-Covarrubias V; Ghosh D; Lakhman SS; Pendyala L; Blanco JG Drug Metab Dispos; 2007 Jun; 35(6):973-80. PubMed ID: 17344335 [TBL] [Abstract][Full Text] [Related]
20. Anthracycline antibiotic reduction by spinach ferredoxin-NADP+ reductase and ferredoxin. Fisher J; Abdella BR; McLane KE Biochemistry; 1985 Jul; 24(14):3562-71. PubMed ID: 3862429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]