BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 16382277)

  • 1. A study on the effect of wet granulation on microcrystalline cellulose particle structure and performance.
    Badawy SI; Gray DB; Hussain MA
    Pharm Res; 2006 Mar; 23(3):634-40. PubMed ID: 16382277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is silicified wet-granulated microcrystalline cellulose better than original wet-granulated microcrystalline cellulose?
    Habib YS; Abramowitz R; Jerzewski RL; Jain NB; Agharkar SN
    Pharm Dev Technol; 1999 Aug; 4(3):431-7. PubMed ID: 10434289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation.
    Osei-Yeboah F; Feng Y; Sun CC
    J Pharm Sci; 2014 Jan; 103(1):207-15. PubMed ID: 24218097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder.
    Jagia M; Trivedi M; Dave RH
    AAPS PharmSciTech; 2016 Aug; 17(4):995-1006. PubMed ID: 26729530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcrystalline cellulose-water interaction--a novel approach using thermoporosimetry.
    Luukkonen P; Maloney T; Rantanen J; Paulapuro H; Yliruusi J
    Pharm Res; 2001 Nov; 18(11):1562-9. PubMed ID: 11758764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J; Alderborn G
    J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcrystalline cellulose and its microstructure in pharmaceutical processing.
    Westermarck S; Juppo AM; Kervinen L; Yliruusi J
    Eur J Pharm Biopharm; 1999 Nov; 48(3):199-206. PubMed ID: 10612030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of microcrystalline cellulose and water in granules prepared by a high-shear mixer.
    Suzuki T; Kikuchi H; Yonemochi E; Terada K; Yamamoto K
    Chem Pharm Bull (Tokyo); 2001 Apr; 49(4):373-8. PubMed ID: 11310660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation.
    Buckton G; Yonemochi E; Yoon WL; Moffat AC
    Int J Pharm; 1999 Apr; 181(1):41-7. PubMed ID: 10370201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating scale-up rules of a high-shear wet granulation process.
    Tao J; Pandey P; Bindra DS; Gao JZ; Narang AS
    J Pharm Sci; 2015 Jul; 104(7):2323-33. PubMed ID: 26010137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the amount of binder liquid on the granulation mechanisms and structure of microcrystalline cellulose granules prepared by high shear granulation.
    Bouwman AM; Henstra MJ; Westerman D; Chung JT; Zhang Z; Ingram A; Seville JP; Frijlink HW
    Int J Pharm; 2005 Feb; 290(1-2):129-36. PubMed ID: 15664138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.
    Vanhoorne V; Bekaert B; Peeters E; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2016 Jun; 506(1-2):13-24. PubMed ID: 27094358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.
    Shi L; Feng Y; Sun CC
    Eur J Pharm Sci; 2011 May; 43(1-2):50-6. PubMed ID: 21443948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation.
    Herting MG; Kleinebudde P
    Eur J Pharm Biopharm; 2008 Sep; 70(1):372-9. PubMed ID: 18511247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine granules showing sustained drug release prepared by high-shear melt granulation using triglycerin full behenate and milled microcrystalline cellulose.
    Aoki H; Iwao Y; Uchimoto T; Noguchi S; Kajihara R; Takahashi K; Ishida M; Terada Y; Suzuki Y; Itai S
    Int J Pharm; 2015 Jan; 478(2):530-9. PubMed ID: 25434591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of Stokes deformation number as a predictive tool for material exchange behaviour of granules in the 'equilibrium phase' in high shear granulation.
    Bouwman AM; Visser MR; Meesters GM; Frijlink HW
    Int J Pharm; 2006 Aug; 318(1-2):78-85. PubMed ID: 16713144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hydroxy propyl cellulose grade and foam quality on foam granulation of a high drug load formulation.
    Koo O; Patel C; Nikfar F
    Int J Pharm; 2024 May; 657():124171. PubMed ID: 38677393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the structure of pharmaceutical granules obtained by wet granulation with varying amounts of water via Raman chemical imaging.
    Šašić S; Loranger SI; Johnson BA
    Appl Spectrosc; 2011 Nov; 65(11):1291-9. PubMed ID: 22054089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties.
    Herting MG; Kleinebudde P
    Int J Pharm; 2007 Jun; 338(1-2):110-8. PubMed ID: 17324537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties.
    Chen L; Ding X; He Z; Fan S; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jul; 546(1-2):125-136. PubMed ID: 29763689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.