These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16382616)

  • 21. Spherical Bragg reflector resonators.
    Tobar ME; Le Floch JM; Cros D; Krupka J; Anstie JD; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Sep; 51(9):1054-9. PubMed ID: 15478967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Fabry-Perot optical micro-cavities based on coating-free all-silicon cylindrical Bragg reflectors.
    Malak M; Gaber N; Marty F; Pavy N; Richalot E; Bourouina T
    Opt Express; 2013 Jan; 21(2):2378-92. PubMed ID: 23389218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave cavities for vapor cell frequency standards.
    Godone A; Micalizio S; Levi F; Calosso C
    Rev Sci Instrum; 2011 Jul; 82(7):074703. PubMed ID: 21806210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An improved coupling design for high-frequency TE011 electron paramagnetic resonance cavities.
    Savitsky A; Grishin Y; Rakhmatullin R; Reijerse E; Lubitz W
    Rev Sci Instrum; 2013 Jan; 84(1):014704. PubMed ID: 23387676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER.
    Salvadori E; Breeze JD; Tan KJ; Sathian J; Richards B; Fung MW; Wolfowicz G; Oxborrow M; Alford NM; Kay CW
    Sci Rep; 2017 Feb; 7():41836. PubMed ID: 28169331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chaotic spectrum of a cavity resonator filled with randomly located sapphire particles.
    Ganapolski EM; Eremenko ZE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056218. PubMed ID: 12059691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation.
    Driscoll MM; Haynes JT; Jelen RA; Weinert RW; Gavaler JR; Talvacchio J; Wagner GR; Zaki KA; Liang XP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):405-11. PubMed ID: 18267650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-Cost and Lightweight 3D-Printed Split-Ring Resonator for Chemical Sensing Applications.
    Salim A; Ghosh S; Lim S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement and analysis of a microwave oscillator stabilized by a sapphire dielectric ring resonator for ultra-low noise.
    Dick GJ; Saunders J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):339-46. PubMed ID: 18285050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene passivation effect on copper cavity resonator preserves Q-factor.
    Nuriakhmetov Z; Chernousov Y; Sakhapov S; Smovzh D
    Nanotechnology; 2023 Mar; 34(20):. PubMed ID: 36780663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the rutile-ring method of frequency-temperature compensating a high-Q whispering gallery sapphire resonator.
    Tobar ME; Hartnett JG; Duchiron G; Cros D; Ivanov EN; Blondy P; Guillon P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):812-20. PubMed ID: 11381706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Q-factor microwave Fabry-Perot resonator with distributed Bragg reflectors.
    Krupka J; Cwikla A; Mrozowski M; Clarke RN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Sep; 52(9):1443-51. PubMed ID: 16285441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-efficiency single-mode free-electron maser oscillator based on a bragg resonator with step of phase of corrugation.
    Ginzburg NS; Kaminsky AA; Kaminsky AK; Peskov NY; Sedykh SN; Sergeev AP; Sergeev AS
    Phys Rev Lett; 2000 Apr; 84(16):3574-7. PubMed ID: 11019149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spherical-sapphire-based whispering gallery mode resonator thermometer.
    Yu L; Fernicola V
    Rev Sci Instrum; 2012 Sep; 83(9):094903. PubMed ID: 23020404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-mode analysis of surface losses in a superconducting microwave resonator in high magnetic fields.
    Braine T; Rybka G; Baker AA; Brodsky J; Carosi G; Du N; Woollett N; Knirck S; Jones M;
    Rev Sci Instrum; 2023 Mar; 94(3):033102. PubMed ID: 37012755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave enhanced polarization in a carbon dioxide molecule.
    Dahiya JN; Roberts JA; Anand A
    J Microw Power Electromagn Energy; 2007; 41(2):4-12. PubMed ID: 18161417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tests of Lorentz invariance using a microwave resonator.
    Wolf P; Bize S; Clairon A; Luiten AN; Santarelli G; Tobar ME
    Phys Rev Lett; 2003 Feb; 90(6):060402. PubMed ID: 12633279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave frequency modulation in CW EPR at W-band using a loop-gap resonator.
    Hyde JS; Froncisz W; Sidabras JW; Camenisch TG; Anderson JR; Strangeway RA
    J Magn Reson; 2007 Apr; 185(2):259-63. PubMed ID: 17267251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compact microwave cavity for high performance rubidium frequency standards.
    Stefanucci C; Bandi T; Merli F; Pellaton M; Affolderbach C; Mileti G; Skrivervik AK
    Rev Sci Instrum; 2012 Oct; 83(10):104706. PubMed ID: 23126789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proposal for a room-temperature diamond maser.
    Jin L; Pfender M; Aslam N; Neumann P; Yang S; Wrachtrup J; Liu RB
    Nat Commun; 2015 Sep; 6():8251. PubMed ID: 26394758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.