These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 16382939)
1. Controls on arsenic speciation and solid-phase partitioning in the sediments of a two-basin lake. Jay JA; Blute NK; Lin K; Senn D; Hemond HF; Durant JL Environ Sci Technol; 2005 Dec; 39(23):9174-81. PubMed ID: 16382939 [TBL] [Abstract][Full Text] [Related]
2. Arsenic redistribution between sediments and water near a highly contaminated source. Keimowitz AR; Zheng Y; Chillrud SN; Mailloux B; Jung HB; Stute M; Simpson HJ Environ Sci Technol; 2005 Nov; 39(22):8606-13. PubMed ID: 16329197 [TBL] [Abstract][Full Text] [Related]
3. Depositional influences on porewater arsenic in sediments of a mining-contaminated freshwater lake. Toevs G; Morra MJ; Winowiecki L; Strawn D; Polizzotto ML; Fendorf S Environ Sci Technol; 2008 Sep; 42(18):6823-9. PubMed ID: 18853795 [TBL] [Abstract][Full Text] [Related]
4. Distribution of phosphorous pools in western river sediments of the Urmia Lake basin, Iran. Arfania H; Samadi A; Asadzadeh F; Sepehr E; Jaisi D Environ Sci Pollut Res Int; 2018 Apr; 25(12):11614-11625. PubMed ID: 29429108 [TBL] [Abstract][Full Text] [Related]
5. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
6. Rates and processes affecting As speciation and mobility in lake sediments during aging. Lock A; Wallschläger D; Belzile N; Spiers G; Gueguen C J Environ Sci (China); 2018 Apr; 66():338-347. PubMed ID: 29628103 [TBL] [Abstract][Full Text] [Related]
7. Influence of algal blooms decay on arsenic dynamics at the sediment-water interface of a shallow lake. Zeng L; Yan C; Guo J; Zhen Z; Zhao Y; Wang D Chemosphere; 2019 Mar; 219():1014-1023. PubMed ID: 30682758 [TBL] [Abstract][Full Text] [Related]
8. [Distribution and sources of arsenic in Yangzonghai Lake, China]. Zhang YX; Xiang XP; Zhang Y; Chen X; Liu JT; Wang JC; Zhang YJ; Sun JC Huan Jing Ke Xue; 2012 Nov; 33(11):3768-77. PubMed ID: 23323405 [TBL] [Abstract][Full Text] [Related]
9. Elevated levels of arsenic in the sediments of an urban pond: sources, distribution and water quality impacts. Durant JL; Ivushkina T; MacLaughlin K; Lukacs H; Gawel J; Senn D; Hemond HF Water Res; 2004 Jul; 38(13):2989-3000. PubMed ID: 15261536 [TBL] [Abstract][Full Text] [Related]
10. Long-term fate of a pulse arsenic input to a eutrophic lake. Senn DB; Gawel JE; Jay JA; Hemond HF; Durant JL Environ Sci Technol; 2007 May; 41(9):3062-8. PubMed ID: 17539505 [TBL] [Abstract][Full Text] [Related]
11. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
12. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416 [TBL] [Abstract][Full Text] [Related]
13. Early diagenetic behavior of arsenic in the sediment of the hypersaline Maharlu Lake, southern Iran. Khosravi R; Zarei M; Vogel H; Bigalke M Chemosphere; 2019 Dec; 237():124465. PubMed ID: 31374397 [TBL] [Abstract][Full Text] [Related]
14. In-situ characterization and assessment of arsenic mobility in lake sediments. Sun Q; Ding S; Wang Y; Xu L; Wang D; Chen J; Zhang C Environ Pollut; 2016 Jul; 214():314-323. PubMed ID: 27107255 [TBL] [Abstract][Full Text] [Related]
15. Speciation and distribution of arsenic in cold seep sediments of the South China Sea. Wang X; Wang J; Mao SH; Zhou Z; Liu Q; He Q; Zhuang GC Mar Pollut Bull; 2024 May; 202():116258. PubMed ID: 38493606 [TBL] [Abstract][Full Text] [Related]
16. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
17. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy. Li W; Joshi SR; Hou G; Burdige DJ; Sparks DL; Jaisi DP Environ Sci Technol; 2015 Jan; 49(1):203-11. PubMed ID: 25469633 [TBL] [Abstract][Full Text] [Related]
18. Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea. Baumann Z; Fisher NS Environ Toxicol Chem; 2011 Mar; 30(3):747-56. PubMed ID: 21154840 [TBL] [Abstract][Full Text] [Related]
19. Arsenic speciation and diffusion flux in Danshuei Estuary sediments, Northern Taiwan. Fang TH; Chen YS Mar Pollut Bull; 2015 Dec; 101(1):98-109. PubMed ID: 26581811 [TBL] [Abstract][Full Text] [Related]
20. Arsenic fractionation and mineralogical characterization of sediments in the Cold Lake area of Alberta, Canada. Javed MB; Kachanoski G; Siddique T Sci Total Environ; 2014 Dec; 500-501():181-90. PubMed ID: 25217755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]