BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16382962)

  • 1. Modeling Cryptosporidium parvum oocyst inactivation and bromate formation in a full-scale ozone contactor.
    Tang G; Adu-Sarkodie K; Kim D; Kim JH; Teefy S; Shukairy HM; Mariñas BJ
    Environ Sci Technol; 2005 Dec; 39(23):9343-50. PubMed ID: 16382962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.
    Kim JH; Elovitz MS; von Gunten U; Shukairy HM; Mariñas BJ
    Water Res; 2007 Jan; 41(2):467-75. PubMed ID: 17123571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous prediction of Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of synthetic waters.
    Kim JH; Von Gunten U; Mariñas BJ
    Environ Sci Technol; 2004 Apr; 38(7):2232-41. PubMed ID: 15112829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-biological surrogate for sequential disinfection processes.
    Baeza C; Ducoste J
    Water Res; 2004; 38(14-15):3400-10. PubMed ID: 15276757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of Bacillus subtilis spores and formation of bromate during ozonation.
    Driedger A; Staub E; Pinkernell U; Mariñas B; Köster W; Von Gunten U
    Water Res; 2001 Aug; 35(12):2950-60. PubMed ID: 11471695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty in prediction of disinfection performance.
    Neumann MB; von Gunten U; Gujer W
    Water Res; 2007 Jun; 41(11):2371-8. PubMed ID: 17433404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine.
    Corona-Vasquez B; Samuelson A; Rennecker JL; Mariñas BJ
    Water Res; 2002 Sep; 36(16):4053-63. PubMed ID: 12405414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Parana State, Southern Brazil.
    Pereira JT; Costa AO; de Oliveira Silva MB; Schuchard W; Osaki SC; de Castro EA; Paulino RC; Soccol VT
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):464-73. PubMed ID: 18498060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Ct equation taking into consideration the effect of lot variability on the inactivation of Cryptosporidium parvum oocysts with ozone.
    Sivaganesan M; Mariñas BJ
    Water Res; 2005 Jun; 39(11):2429-37. PubMed ID: 15963550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficiency of ozonated water from a water treatment plant to inactivate Cryptosporidium oocysts during two seasonal temperatures.
    Wohlsen T; Stewart S; Aldridge P; Bates J; Gray B; Katouli M
    J Water Health; 2007 Sep; 5(3):433-40. PubMed ID: 17878558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters.
    Biswas K; Craik S; Smith DW; Belosevic M
    Water Res; 2005 Sep; 39(14):3167-76. PubMed ID: 16000207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone.
    Craik SA; Smith DW; Chandrakanth M; Belosevic M
    Water Res; 2003 Sep; 37(15):3622-31. PubMed ID: 12867328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of disinfectant concentration and pH in the inactivation kinetics of Cryptosporidium parvum oocysts with ozone and monochloramine.
    Rennecker JL; Kim JH; Corona-Vasquez B; Mariñas BJ
    Environ Sci Technol; 2001 Jul; 35(13):2752-7. PubMed ID: 11452604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating hydraulic and disinfection efficiencies of a full-scale ozone contactor using a RANS-based modeling framework.
    Zhang J; Tejada-Martínez AE; Zhang Q; Lei H
    Water Res; 2014 Apr; 52():155-67. PubMed ID: 24468426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.
    Luo X; Jedlicka S; Jellison K
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential inactivation of Cryptosporidium parvum oocysts with chlorine dioxide followed by free chlorine or monochloramine.
    Corona-Vasquez B; Rennecker JL; Driedger AM; Mariñas BJ
    Water Res; 2002 Jan; 36(1):178-88. PubMed ID: 11766793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian method of estimating kinetic parameters for the inactivation of Cryptosporidium parvum oocysts with chlorine dioxide and ozone.
    Sivaganesan M; Rice EW; Mariñas BJ
    Water Res; 2003 Nov; 37(18):4533-43. PubMed ID: 14511724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Cryptosporidium parvum viability and infectivity assays following ozone treatment of oocysts.
    Bukhari Z; Marshall MM; Korich DG; Fricker CR; Smith HV; Rosen J; Clancy JL
    Appl Environ Microbiol; 2000 Jul; 66(7):2972-80. PubMed ID: 10877794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of solar photocatalysis using TiO2 slurry in the inactivation of Cryptosporidium parvum oocysts in water.
    Abeledo-Lameiro MJ; Ares-Mazás E; Gómez-Couso H
    J Photochem Photobiol B; 2016 Oct; 163():92-9. PubMed ID: 27543761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decolorization and control of bromate formation in membrane ozonation of humic-rich groundwater.
    Kämmler J; Zoumpouli GA; Sellmann J; Chew YMJ; Wenk J; Ernst M
    Water Res; 2022 Aug; 221():118739. PubMed ID: 35716412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.